GRIFFIN: a system for predicting GPCR-G-protein coupling selectivity using a support vector machine and a hidden Markov model
- PMID: 15980445
- PMCID: PMC1160255
- DOI: 10.1093/nar/gki495
GRIFFIN: a system for predicting GPCR-G-protein coupling selectivity using a support vector machine and a hidden Markov model
Abstract
We describe a novel system, GRIFFIN (G-protein and Receptor Interaction Feature Finding INstrument), that predicts G-protein coupled receptor (GPCR) and G-protein coupling selectivity based on a support vector machine (SVM) and a hidden Markov model (HMM) with high sensitivity and specificity. Based on our assumption that whole structural segments of ligands, GPCRs and G-proteins are essential to determine GPCR and G-protein coupling, various quantitative features were selected for ligands, GPCRs and G-protein complex structures, and those parameters that are the most effective in selecting G-protein type were used as feature vectors in the SVM. The main part of GRIFFIN includes a hierarchical SVM classifier using the feature vectors, which is useful for Class A GPCRs, the major family. For the opsins and olfactory subfamilies of Class A and other minor families (Classes B, C, frizzled and smoothened), the binding G-protein is predicted with high accuracy using the HMM. Applying this system to known GPCR sequences, each binding G-protein is predicted with high sensitivity and specificity (>85% on average). GRIFFIN (http://griffin.cbrc.jp/) is freely available and allows users to easily execute this reliable prediction of G-proteins.
Figures


Similar articles
-
Computational overview of GPCR gene universe to support reverse chemical genomics study.Methods Mol Biol. 2009;577:41-54. doi: 10.1007/978-1-60761-232-2_4. Methods Mol Biol. 2009. PMID: 19718507
-
GPCR-MPredictor: multi-level prediction of G protein-coupled receptors using genetic ensemble.Amino Acids. 2012 May;42(5):1809-23. doi: 10.1007/s00726-011-0902-6. Epub 2011 Apr 20. Amino Acids. 2012. PMID: 21505826
-
A method for the prediction of GPCRs coupling specificity to G-proteins using refined profile Hidden Markov Models.BMC Bioinformatics. 2005 Apr 22;6:104. doi: 10.1186/1471-2105-6-104. BMC Bioinformatics. 2005. PMID: 15847681 Free PMC article.
-
Structural insights into ligand recognition and selectivity for classes A, B, and C GPCRs.Eur J Pharmacol. 2015 Sep 15;763(Pt B):196-205. doi: 10.1016/j.ejphar.2015.05.013. Epub 2015 May 14. Eur J Pharmacol. 2015. PMID: 25981303 Free PMC article. Review.
-
Transmembrane signaling by G protein-coupled receptors.Methods Mol Biol. 2006;332:3-49. doi: 10.1385/1-59745-048-0:1. Methods Mol Biol. 2006. PMID: 16878684 Review.
Cited by
-
Advances in the Development and Application of Computational Methodologies for Structural Modeling of G-Protein Coupled Receptors.Expert Opin Drug Discov. 2008 Mar;3(3):343-355. doi: 10.1517/17460441.3.3.343. Expert Opin Drug Discov. 2008. PMID: 19672320 Free PMC article.
-
Understanding G Protein Selectivity of Muscarinic Acetylcholine Receptors Using Computational Methods.Int J Mol Sci. 2019 Oct 24;20(21):5290. doi: 10.3390/ijms20215290. Int J Mol Sci. 2019. PMID: 31653051 Free PMC article.
-
A Web Server for GPCR-GPCR Interaction Pair Prediction.Front Endocrinol (Lausanne). 2022 Mar 24;13:825195. doi: 10.3389/fendo.2022.825195. eCollection 2022. Front Endocrinol (Lausanne). 2022. PMID: 35399947 Free PMC article.
-
Prediction of functional class of proteins and peptides irrespective of sequence homology by support vector machines.Bioinform Biol Insights. 2009 Nov 24;1:19-47. doi: 10.4137/bbi.s315. Bioinform Biol Insights. 2009. PMID: 20066123 Free PMC article.
-
Illuminating G-Protein-Coupling Selectivity of GPCRs.Cell. 2019 Jun 13;177(7):1933-1947.e25. doi: 10.1016/j.cell.2019.04.044. Epub 2019 May 31. Cell. 2019. PMID: 31160049 Free PMC article.
References
-
- Drews J. Genomic sciences and the medicine of tomorrow. Nat. Biotechnol. 1996;14:1516–1518. - PubMed
-
- Gaulton A., Attwood T.K. Bioinformatics approaches for the classification of G-protein-coupled receptors. Curr. Opin. Pharmacol. 2003;3:114–120. - PubMed
-
- Karchin R., Karplus K., Haussler D. Classifying G-protein coupled receptors with support vector machines. Bioinformatics. 2002;18:147–159. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources