Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Jun;9(2):91-9.
doi: 10.1007/s10157-005-0355-x.

Renal tubular transport and the genetic basis of hypertensive disease

Affiliations
Review

Renal tubular transport and the genetic basis of hypertensive disease

Florian Lang et al. Clin Exp Nephrol. 2005 Jun.

Abstract

Several monogenic hypertensive disorders are caused by genetic mutations leading to the deranged function and/or regulation of renal tubular NaCl transport, such as mutations of the renal epithelial Na+ channel (ENaC) in Liddle syndrome, of the kinase WNK1 (with no K) in Gordon syndrome, and of the mineralocorticoid receptor, or of 11beta-hydroxysteroid dehydrogenase. Moreover, excessive formation of aldosterone in glucocorticoid-remediable hypertension leads to severe hypertension. Conversely, impaired function of the Na+,K+,2Cl- cotransporter (NKCC2), the renal outer medullary K+ channel (ROMK1), and the renal epithelial Cl- channel ClCKb/Barttin causes Bartter syndrome and defective Na+,Cl+ cotransporter (NCCT) Gitelman syndrome, salt-wasting disorders with hypotension. These monogenic disorders are rare, but illustrate the significance of renal tubular transport in blood pressure regulation. There is little doubt, however, that deranged renal salt reabsorption significantly contributes to essential hypertension polymorphisms of several genes participating in the regulation of renal Na+ transport have been shown to be associated with blood pressure and prevalence of hypertension. Two common genes will be discussed in more detail. The first encodes the renal Cl- channel ClCKb. A gain-of-function mutation of ClCKb, increasing channel activity by 7- to 20-fold is found in approximately 20% of unselected Caucasians and 40% of an unselected African population. The second common gene variant (prevalence, 3%-5% in unselected Caucasians), to be discussed in more detail, affects the serum and glucocorticoid inducible kinase SGK1, a kinase upregulated by mineralocorticoids and enhancing the activity of ENaC, ROMK, and Na+/K+ATPase. Both gene variants are associated with slightly increased blood pressure. SGK1 further stimulates the glucose transporter SGLT1, and the SGK1 gene variant correlates, in addition, with increased body mass index.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Nat Genet. 1995 Aug;10(4):394-9 - PubMed
    1. Circulation. 1989 Dec;80(6):1610-6 - PubMed
    1. Mol Cell Endocrinol. 2000 Aug 30;166(2):129-36 - PubMed
    1. Hypertension. 2002 Jun;39(6):1037-43 - PubMed
    1. Am J Physiol. 1998 May;274(5 Pt 2):F817-33 - PubMed

LinkOut - more resources