Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Jul-Aug;1(4):290-9.
doi: 10.1021/mp049952s.

Circumventing P-glycoprotein-mediated cellular efflux of quinidine by prodrug derivatization

Affiliations
Comparative Study

Circumventing P-glycoprotein-mediated cellular efflux of quinidine by prodrug derivatization

Ritesh Jain et al. Mol Pharm. 2004 Jul-Aug.

Abstract

The objective of this study is to investigate whether transporter-targeted prodrug derivatization of quinidine, a model P-glycoprotein (P-gp) substrate, can circumvent P-gp-mediated efflux. The L-valine ester of quinidine (val-quinidine) was synthesized in our laboratory. Uptake and transport studies were carried out using the MDCKII-MDRI cell line at 37 degrees C for 10 min and 3 h, respectively. [3H]Ritonavir and cyclosporine were also used as model P-gp substrates to delineate the kinetics of translocation of val-quinidine across the MDCKII-MDRI cell monolayer. The rate of uptake of [3H]ritonavir by MDCKII-MDRI cells exhibited a 2-fold increase in the presence of 75 microM quinidine, but 75 microM val-quinidine did not demonstrate any effect on [3H]ritonavir uptake. The rate of transport of quinidine from the basolateral to the apical membrane [(18.3 +/- 1.25) x 10(-6) cm s(-1)] and from the apical to the basolateral membrane [(6.5 +/- 0.66) x 10(-6) cm s(-1)] exhibited a 3-fold difference. However, transport of val-quinidine from the apical to the basolateral membrane [(5.13 +/- 0.49) x 10(-6) cm s(-1)] and from the basolateral to the apical membrane [(6.17 +/- 1.28) x 10(-6) cm s(-1)] did not demonstrate any statistically significant difference. Moreover, cyclosporine, a potent P-gp substrate and/or inhibitor, did not alter the transport kinetics of val-quinidine. The rates of uptake of [3H]Gly-Sar and various amino acid model substrates were reduced in the presence of 200 microM val-quinidine. Results from this study clearly indicate that prodrug derivatization of quinidine into val-quinidine can overcome P-gp-mediated efflux. Val-quinidine once bound to a peptide or amino acid transporter is probably not recognized and cannot be accessed by the P-gp efflux pump. Transporter-targeted prodrug derivatization seems to be a viable strategy for overcoming P-gp-mediated efflux.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources