Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005;134(1):301-15.
doi: 10.1016/j.neuroscience.2005.03.031.

Real-time and automatic sorting of multi-neuronal activity for sub-millisecond interactions in vivo

Affiliations

Real-time and automatic sorting of multi-neuronal activity for sub-millisecond interactions in vivo

S Takahashi et al. Neuroscience. 2005.

Abstract

Recent in vitro electrophysiological studies have revealed that neighboring interneurons interact with each other in a sub-millisecond time range via gap junctions and that individual dendritic compartments generate local excitation spikes and back-propagated spikes within a single-neuron. However, most in vivo electrophysiological studies using behaving animals only focus on activity rates of single-neurons and/or large neuronal populations without considering the potential role of such sub-millisecond interactions among neurons. This neglect is due to the limitation of ordinary in vivo multi-neuronal recording and spike sorting techniques applied to behaving animals. Though independent component analysis (ICA) is a powerful method to overcome certain limitations, ICA has a serious problem in that the number of single-electrodes (microwires) must be more than the number of single-neurons to be recorded. Our recently-developed method has solved this limitation of ICA, but a few problems have remained: the computational load is heavy, the method can be used only for off-line, not real-time, processing, and the electrode-neuron drift problem remains unsolved. In this paper, solving all these problems, we introduce a novel system consisting of automatic and real-time spike sorting with ICA in combination with a newly developed multi-electrode, dodecatrode. The system has the potential to answer some important neurobiological questions that have not been explored in in vivo electrophysiological experiments: how sub-millisecond interactions between closely neighboring single-neurons act in freely behaving animals. The system promises to be a bridge connecting electrophysiological studies in vitro and in vivo.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources