Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jul;61(Pt 7):863-72.
doi: 10.1107/S0907444905007882. Epub 2005 Jun 24.

Structural basis for inhibition of Escherichia coli uridine phosphorylase by 5-substituted acyclouridines

Affiliations

Structural basis for inhibition of Escherichia coli uridine phosphorylase by 5-substituted acyclouridines

Weiming Bu et al. Acta Crystallogr D Biol Crystallogr. 2005 Jul.

Abstract

Uridine phosphorylase (UP) catalyzes the reversible phosphorolysis of uridine to uracil and ribose 1-phosphate and is a key enzyme in the pyrimidine-salvage pathway. Escherichia coli UP is structurally homologous to E. coli purine nucleoside phosphorylase and other members of the type I family of nucleoside phosphorylases. The structures of 5-benzylacyclouridine, 5-phenylthioacyclouridine, 5-phenylselenenylacyclouridine, 5-m-benzyloxybenzyl acyclouridine and 5-m-benzyloxybenzyl barbituric acid acyclonucleoside bound to the active site of E. coli UP have been determined, with resolutions ranging from 1.95 to 2.3 A. For all five complexes the acyclo sugar moiety binds to the active site in a conformation that mimics the ribose ring of the natural substrates. Surprisingly, the terminal hydroxyl group occupies the position of the nonessential 5'-hydroxyl substituent of the substrate rather than the 3'-hydroxyl group, which is normally required for catalytic activity. Until recently, inhibitors of UP were designed with limited structural knowledge of the active-site residues. These structures explain the basis of inhibition for this series of acyclouridine analogs and suggest possible additional avenues for future drug-design efforts. Furthermore, the studies can be extended to design inhibitors of human UP, for which no X-ray structure is available.

PubMed Disclaimer

Publication types

LinkOut - more resources