High-pressure cooling of protein crystals without cryoprotectants
- PMID: 15983410
- DOI: 10.1107/S090744490500836X
High-pressure cooling of protein crystals without cryoprotectants
Abstract
Flash-cooling of protein crystals is the best known method to effectively mitigate radiation damage in macromolecular crystallography. To prevent physical damage to crystals upon cooling, suitable cryoprotectants must usually be found, a process that is time-consuming and in some cases unsuccessful. A method is described to cool protein crystals in high-pressure helium gas without the need for penetrative cryoprotectants. The method involves mounting protein crystals from the native mother liquor in a cryoloop with a droplet of oil, pressurizing the crystal to 200 MPa in He gas, cooling the crystal under pressure and then releasing the pressure. The crystal is then removed from the apparatus under liquid nitrogen and handled thereafter like a normal cryocooled crystal. Results are presented from three representative proteins. Dramatic improvement in diffraction quality in terms of resolution and mosaicity was observed in all cases. A mechanism for the pressure cooling is proposed involving high-density amorphous (HDA) ice which is produced at high pressure and is metastable at room pressure and 110 K.
Similar articles
-
Solution of protein crystallographic structures by high-pressure cryocooling and noble-gas phasing.Acta Crystallogr D Biol Crystallogr. 2006 Jul;62(Pt 7):687-94. doi: 10.1107/S0907444906014727. Epub 2006 Jun 20. Acta Crystallogr D Biol Crystallogr. 2006. PMID: 16790924
-
Annealing macromolecular crystals.Methods Mol Biol. 2007;364:31-42. doi: 10.1385/1-59745-266-1:31. Methods Mol Biol. 2007. PMID: 17172759
-
Cryogenic (<20 K) helium cooling mitigates radiation damage to protein crystals.Acta Crystallogr D Biol Crystallogr. 2007 Apr;63(Pt 4):486-92. doi: 10.1107/S0907444907005264. Epub 2007 Mar 16. Acta Crystallogr D Biol Crystallogr. 2007. PMID: 17372353
-
Macromolecular cryocrystallography--methods for cooling and mounting protein crystals at cryogenic temperatures.Methods. 2004 Nov;34(3):415-23. doi: 10.1016/j.ymeth.2004.03.032. Methods. 2004. PMID: 15325658 Review.
-
Cryocooling and radiation damage in macromolecular crystallography.Acta Crystallogr D Biol Crystallogr. 2006 Jan;62(Pt 1):32-47. doi: 10.1107/S0907444905034207. Epub 2005 Dec 14. Acta Crystallogr D Biol Crystallogr. 2006. PMID: 16369092 Review.
Cited by
-
Structural and kinetic effects on changes in the CO(2) binding pocket of human carbonic anhydrase II.Biochemistry. 2012 Nov 13;51(45):9156-63. doi: 10.1021/bi301155z. Epub 2012 Nov 2. Biochemistry. 2012. PMID: 23098192 Free PMC article.
-
Microcrystallography, high-pressure cryocooling and BioSAXS at MacCHESS.J Synchrotron Radiat. 2011 Jan;18(1):70-3. doi: 10.1107/S0909049510036010. Epub 2010 Nov 5. J Synchrotron Radiat. 2011. PMID: 21169696 Free PMC article.
-
High-resolution X-ray crystal structure of bovine H-protein using the high-pressure cryocooling method.J Synchrotron Radiat. 2013 Nov;20(Pt 6):989-93. doi: 10.1107/S090904951302373X. Epub 2013 Oct 5. J Synchrotron Radiat. 2013. PMID: 24121354 Free PMC article.
-
Structural rigidity of a large cavity-containing protein revealed by high-pressure crystallography.J Mol Biol. 2007 Mar 30;367(3):752-63. doi: 10.1016/j.jmb.2006.12.021. Epub 2006 Dec 15. J Mol Biol. 2007. PMID: 17292912 Free PMC article.
-
Upscaling X-ray nanoimaging to macroscopic specimens.J Appl Crystallogr. 2021 Feb 19;54(Pt 2):386-401. doi: 10.1107/S1600576721000194. eCollection 2021 Apr 1. J Appl Crystallogr. 2021. PMID: 33953650 Free PMC article. Review.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources