Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jun 1;39(11):4317-20.
doi: 10.1021/es050244p.

Electrochemically assisted microbial production of hydrogen from acetate

Affiliations

Electrochemically assisted microbial production of hydrogen from acetate

Hong Liu et al. Environ Sci Technol. .

Abstract

Hydrogen production via bacterial fermentation is currently limited to a maximum of 4 moles of hydrogen per mole of glucose, and under these conditions results in a fermentation end product (acetate; 2 mol/mol glucose) that bacteria are unable to further convert to hydrogen. It is shown here that this biochemical barrier can be circumvented by generating hydrogen gas from acetate using a completely anaerobic microbial fuel cell (MFC). By augmenting the electrochemical potential achieved by bacteria in this MFC with an additional voltage of 250 mV or more, it was possible to produce hydrogen at the cathode directly from the oxidized organic matter. More than 90% of the protons and electrons produced by the bacteria from the oxidation of acetate were recovered as hydrogen gas, with an overall Coulombic efficiency (total recovery of electrons from acetate) of 60-78%. This is equivalent to an overall yield of 2.9 mol H2/mol acetate (assuming 78% Coulombic efficiency and 92% recovery of electrons as hydrogen). This bio-electrochemically assisted microbial system, if combined with hydrogen fermentation that produces 2-3 mol H2/mol glucose, has the potential to produce ca. 8-9 mol H2/mol glucose at an energy cost equivalent to 1.2 mol H2/mol glucose. Production of hydrogen by this anaerobic MFC process is not limited to carbohydrates, as in a fermentation process, as any biodegradable dissolved organic matter can theoretically be used in this process to generate hydrogen from the complete oxidation of organic matter.

PubMed Disclaimer

Comment in

Publication types

LinkOut - more resources