Telomestatin and diseleno sapphyrin bind selectively to two different forms of the human telomeric G-quadruplex structure
- PMID: 15984871
- DOI: 10.1021/ja0505088
Telomestatin and diseleno sapphyrin bind selectively to two different forms of the human telomeric G-quadruplex structure
Abstract
The human telomeric sequence d[T(2)AG(3)](4) has been demonstrated to form different types of G-quadruplex structures, depending upon the incubation conditions. For example, in sodium (Na(+)), a basket-type G-quadruplex structure is formed. In this investigation, using circular dichroism (CD), biosensor-surface plasmon resonance (SPR), and a polymerase stop assay, we have examined how the addition of different G-quadruplex-binding ligands affects the conformation of the telomeric G-quadruplex found in solution. The results show that while telomestatin binds preferentially to the basket-type G-quadruplex structure with a 2:1 stoichiometry, 5,10,15,20-[tetra-(N-methyl-3-pyridyl)]-26-28-diselena sapphyrin chloride (Se2SAP) binds to a different form with a 1:1 stoichiometry in potassium (K(+)). CD studies suggest that Se2SAP binds to a hybrid G-quadruplex that has strong parallel and antiparallel characteristics, suggestive of a structure containing both propeller and lateral, or edgewise, loops. Telomestatin is unique in that it can induce the formation of the basket-type G-quadruplex from a random coil human telomeric oligonucleotide, even in the absence of added monovalent cations such as K(+) or Na(+). In contrast, in the presence of K(+), Se2SAP was found to convert the preformed basket G-quadruplex to the hybrid structure. The significance of these results is that the presence of different ligands can determine the type of telomeric G-quadruplex structures formed in solution. Thus, the biochemical and biological consequences of binding of ligands to G-quadruplex structures found in telomeres and promoter regions of certain important oncogenes go beyond mere stabilization of these structures.
Similar articles
-
Design and synthesis of an expanded porphyrin that has selectivity for the c-MYC G-quadruplex structure.J Am Chem Soc. 2005 Mar 9;127(9):2944-59. doi: 10.1021/ja0444482. J Am Chem Soc. 2005. PMID: 15740131
-
The different biological effects of telomestatin and TMPyP4 can be attributed to their selectivity for interaction with intramolecular or intermolecular G-quadruplex structures.Cancer Res. 2003 Jun 15;63(12):3247-56. Cancer Res. 2003. PMID: 12810655
-
Energetics of the human Tel-22 quadruplex-telomestatin interaction: a molecular dynamics study.J Phys Chem B. 2008 Jun 5;112(22):6828-36. doi: 10.1021/jp7102676. Epub 2008 May 8. J Phys Chem B. 2008. PMID: 18461983
-
Interaction of G-quadruplexes with nonintercalating duplex-DNA minor groove binding ligands.Bioconjug Chem. 2011 Dec 21;22(12):2355-68. doi: 10.1021/bc200268a. Epub 2011 Nov 10. Bioconjug Chem. 2011. PMID: 22074555 Review.
-
Methods for investigating G-quadruplex DNA/ligand interactions.Chem Soc Rev. 2011 Nov;40(11):5293-307. doi: 10.1039/c1cs15117g. Epub 2011 Jul 1. Chem Soc Rev. 2011. PMID: 21720638 Review.
Cited by
-
Emerging biosensors in detection of natural products.Synth Syst Biotechnol. 2020 Sep 4;5(4):293-303. doi: 10.1016/j.synbio.2020.08.002. eCollection 2020 Dec. Synth Syst Biotechnol. 2020. PMID: 32954023 Free PMC article. Review.
-
"One ring to bind them all"-part I: the efficiency of the macrocyclic scaffold for g-quadruplex DNA recognition.J Nucleic Acids. 2010 May 24;2010:525862. doi: 10.4061/2010/525862. J Nucleic Acids. 2010. PMID: 20725629 Free PMC article.
-
Energetics and kinetics of a conformational switch in G-quadruplex DNA.J Phys Chem B. 2009 Mar 5;113(9):2676-83. doi: 10.1021/jp809578f. J Phys Chem B. 2009. PMID: 19708205 Free PMC article.
-
DNA secondary structures: stability and function of G-quadruplex structures.Nat Rev Genet. 2012 Nov;13(11):770-80. doi: 10.1038/nrg3296. Epub 2012 Oct 3. Nat Rev Genet. 2012. PMID: 23032257 Free PMC article. Review.
-
Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution.Nucleic Acids Res. 2006 May 19;34(9):2723-35. doi: 10.1093/nar/gkl348. Print 2006. Nucleic Acids Res. 2006. PMID: 16714449 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources