Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Aug;2(8):e232.
doi: 10.1371/journal.pmed.0020232. Epub 2005 Jul 5.

Agricultural antibiotics and human health

Affiliations

Agricultural antibiotics and human health

David L Smith et al. PLoS Med. 2005 Aug.

Abstract

Smith and colleagues discuss evidence suggesting that antibiotic use in agriculture has contributed to antibiotic resistance in the pathogenic bacteria of humans.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: DLS and JGM received funding four years ago from Pfizer to conduct a risk assessment for the emergence of streptogramin resistance in Enterococcus faecium. JD declares that he has no competing interests.

Figures

Figure 1
Figure 1. The Emergence and Spread of Antibiotic Resistance in Bacteria with High Horizontal Transmission Rates
Emergence and spread begins with a honeymoon period following the approval of a new antibiotic; the honeymoon ends when resistance emerges. Prevalence increases exponentially at first, but it eventually approaches a steady state. The impact of agricultural antibiotic use must be assessed by comparing the observed situation with the counterfactual situation, an imaginary world in which antibiotics were never used in agriculture. The impact of agricultural antibiotic use is, then, the total number of cases of resistance that would not have happened without the use of antibiotics in agriculture. This is approximately the difference between the time of actual emergence and the counterfactual emergence, multiplied by the steady-state prevalence. While we don't know what would have happened in any particular case, we can estimate the likely magnitude of agricultural impacts.
Figure 2
Figure 2. How Large Is the Impact of Antibiotic Use in Agriculture?
Comparing the amount of antibiotics used in agriculture with the amount used in medicine means comparing fundamentally different things because they affect the emergence of medically important antibiotic resistance in different ways. For hospital-acquired infections, it is more appropriate to think about ARB carriage in the community as a kind of pollution that flows into hospitals. Thus, the appropriate way to measure impact is by counting how many new carriers are added to the community reservoir from hospital discharges versus from exposure to bacteria that originate on farms. Different formulas describe these processes. To count ARB carriers among hospital discharges, let x denote the proportion of patients from a hospital (or other institution) that are colonized on discharge. In some discharged patients, resistant bacteria clear quickly, but a fraction, p, become ARB carriers. Some proportion of patients were already carriers at the time of admission, denoted by k. Institutions vary by size, H, and average length of stay (1/s). Thus, the rate that new carriers are discharged from a hospital is given by the formula: sH(px − k). This formula measures the contribution of a hospital to the number of ARB carriers in the community. For example, a hospital with 400 filled beds (H = 400 people) serves a US population of about 250,000 people. With a five-day average length of stay (the discharge rate is s = 0.2 per patient per day), the hospital discharges about 80 patients each day. If we suppose that 20% of patients acquire resistant bacteria while hospitalized, and one in four of these patients become carriers (px − k = 0.05), a hospital would discharge about four persistently colonized people per day—about 1,460 carriers after one year, or approximately 0.58% of its catchment population. A different formula characterizes heterospecific transmission, following exposure to ARB on contaminated food. We let g denote the daily per-capita rate that ARB are ingested with a meal. Similarly, we let h denote the proportion of those ARB populations that survive the gastric barrier and persistently colonize. The number of new carriers generated in the community by agricultural antibiotic use in a population of size N is: ghN. For example, if the average person consumes some ARB in 1% of meals (g = 0.03 per person per day), followed by colonization with probability one in 2,000 (h = 0.0005), agricultural antibiotic use would generate about four new carriers per day in a population of 250,000 people, N, approximately the same number as a hospital. The formulas illustrate a general principle: “A large number of people exposed to a small risk may generate many more cases than a small number exposed to a high risk” [34].

Comment in

Similar articles

Cited by

References

    1. Taylor LH, Latham SM, Woolhouse MEJ. Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci. 2001;356:983–989. - PMC - PubMed
    1. Hamscher G, Pawelzick HT, Sczesny S, Nau H, Hartung J. Antibiotics in dust originating from a pig-fattening farm: A new source of health hazard for farmers? Environ Health Perspect. 2003;111:1590–1594. - PMC - PubMed
    1. Zahn JA. Evidence for transfer of tylosin and tylosin-resistant bacteria in air from swine production facilities using sub-therapeutic concentrations of Tylan in feed. J Anim Sci. 2001;79:189.
    1. Iversen A, Kuhn I, Rahman M, Franklin A, Burman LG, et al. Evidence for transmission between humans and the environment of a nosocomial strain of Enterococcus faecium . Environ Microbiol. 2004;6:55–59. - PubMed
    1. Gilliver MA, Bennett M, Begon M, Hazel SM, Hart CA. Antibiotic resistance found in wild rodents. Nature. 1999;401:233–234. - PubMed

MeSH terms