Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jun 29:5:52.
doi: 10.1186/1471-2334-5-52.

Transmission dynamics of rabies virus in Thailand: implications for disease control

Affiliations

Transmission dynamics of rabies virus in Thailand: implications for disease control

Jessada Denduangboripant et al. BMC Infect Dis. .

Abstract

Background: In Thailand, rabies remains a neglected disease with authorities continuing to rely on human death statistics while ignoring the financial burden resulting from an enormous increase in post-exposure prophylaxis. Past attempts to conduct a mass dog vaccination and sterilization program have been limited to Bangkok city and have not been successful. We have used molecular epidemiology to define geographic localization of rabies virus phylogroups and their pattern of spread in Thailand.

Methods: We analyzed 239 nucleoprotein gene sequences from animal and human brain samples collected from all over Thailand between 1998 and 2002. We then reconstructed a phylogenetic tree correlating these data with geographical information.

Results: All sequences formed a monophyletic tree of 2 distinct phylogroups, TH1 and TH2. Three subgroups were identified in the TH1 subgroup and were distributed in the middle region of the country. Eight subgroups of TH2 viruses were identified widely distributed throughout the country overlapping the TH1 territory. There was a correlation between human-dependent transportation routes and the distribution of virus.

Conclusion: Inter-regional migration paths of the viruses might be correlated with translocation of dogs associated with humans. Interconnecting factors between human socioeconomic and population density might determine the transmission dynamics of virus in a rural-to-urban polarity. The presence of 2 or more rabies virus groups in a location might be indicative of a gene flow, reflecting a translocation of dogs within such region and adjacent areas. Different approaches may be required for rabies control based on the homo- or heterogeneity of the virus. Areas containing homogeneous virus populations should be targeted first. Control of dog movement associated with humans is essential.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Comparison between NJ tree of Thai rabies N genes and geographical distribution map. Neighbor-joining (NJ) tree based on 414 bp nucleotide sequences of the N genes of all 239 Thai rabies virus isolates compared with other 11 lyssavirus outgroups. Numbers along tree branches are >50% bootstrap supporting-value (1,000 replicates). The map of Thailand indicates geographical distributions of the 2 major phylogroups, TH1 and TH2, in a district-level (a subdivision of a province).
Figure 2
Figure 2
Comparison between NJ tree of TH1 rabies sequences and the distribution map. A comparison between the NJ tree of 60 N gene sequences of TH1 rabies viruses (with the TH2 isolate 703KKm added as an outgroup) and the Thailand map indicates geographical distributions of the subgroups TH1A, TH1B, and TH1C.
Figure 3
Figure 3
Comparison between NJ tree of TH2A and TH2B rabies sequences and the distribution map. A comparison between the bottom part of the NJ tree of TH2 rabies viruses (with the TH1 isolate 125SSktb added as an outgroup) and the Thailand map indicates geographical distributions of the subgroups TH2A and TH2B.
Figure 4
Figure 4
Comparison between NJ tree of TH2C, TH2D, TH2E, and TH2F rabies sequences and the distribution map. A comparison between the middle part of the NJ tree of TH2 rabies viruses and the Thailand map indicates geographical distributions of the subgroups TH2C, TH2D, TH2E, and TH2F.
Figure 5
Figure 5
Comparison between NJ tree of TH2G and TH2H rabies sequences and the distribution map. A comparison between the top part of the NJ tree of TH2 rabies viruses and the Thailand map indicates geographical distributions of the subgroups TH2G and TH2H.
Figure 6
Figure 6
Comparison between geographical distribution of rabies viruses in Thailand and in Kanchanaburi province. Geographical distribution of all Thai rabies virus subgroups. Kanchanaburi province was magnified to show province geography and roadmap. Red areas in the Kanchanaburi map indicate the collecting localities of rabies hosts in a tambon (a subdivision of a district)-level. The map was retrieved from

References

    1. Mitmoonpitak C, Wilde H, Tepsumetanon W. Current status of animal rabies in Thailand. J Vet Med Sci. 1997;59:457–60. doi: 10.1292/jvms.59.457. - DOI - PubMed
    1. Hemachudha T, Laothamatas J, Rupprecht CE. Human rabies: a disease of complex neuropathogenetic mechanisms and diagnostic challenges. Lancet Neurol. 2002;1:101–9. doi: 10.1016/S1474-4422(02)00041-8. - DOI - PubMed
    1. PAHO . Epidemiological surveillance of rabies in the Americas. Washington DC: Pan American Health Organization; 2000.
    1. Hemachudha T, Wacharapluesadee S, Lumlertdaecha B, Orciari LA, Rupprecht CE, La-ongpant M, Juntrakul S, Denduangboripant J. Sequence analysis of rabies virus in humans exhibiting encephalitic or paralytic rabies. J Infect Dis. 2003;188:960–6. doi: 10.1086/378415. - DOI - PubMed
    1. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25:4876–82. doi: 10.1093/nar/25.24.4876. - DOI - PMC - PubMed

Publication types