Statistical issues in the analysis of neuronal data
- PMID: 15985692
- DOI: 10.1152/jn.00648.2004
Statistical issues in the analysis of neuronal data
Abstract
Analysis of data from neurophysiological investigations can be challenging. Particularly when experiments involve dynamics of neuronal response, scientific inference can become subtle and some statistical methods may make much more efficient use of the data than others. This article reviews well-established statistical principles, which provide useful guidance, and argues that good statistical practice can substantially enhance results. Recent work on estimation of firing rate, population coding, and time-varying correlation provides improvements in experimental sensitivity equivalent to large increases in the number of neurons examined. Modern nonparametric methods are applicable to data from repeated trials. Many within-trial analyses based on a Poisson assumption can be extended to non-Poisson data. New methods have made it possible to track changes in receptive fields, and to study trial-to-trial variation, with modest amounts of data.
Similar articles
-
Statistical assessment of time-varying dependency between two neurons.J Neurophysiol. 2005 Oct;94(4):2940-7. doi: 10.1152/jn.00645.2004. J Neurophysiol. 2005. PMID: 16160097
-
Bayesian estimation of stimulus responses in Poisson spike trains.Neural Comput. 2004 Jul;16(7):1325-43. doi: 10.1162/089976604323057407. Neural Comput. 2004. PMID: 15165392
-
Change-point analysis of neuron spike train data.Biometrics. 1998 Mar;54(1):113-23. Biometrics. 1998. PMID: 9544510
-
Nonlinear multivariate analysis of neurophysiological signals.Prog Neurobiol. 2005 Sep-Oct;77(1-2):1-37. doi: 10.1016/j.pneurobio.2005.10.003. Epub 2005 Nov 14. Prog Neurobiol. 2005. PMID: 16289760 Review.
-
Statistical decision theory to relate neurons to behavior in the study of covert visual attention.Vision Res. 2009 Jun;49(10):1097-128. doi: 10.1016/j.visres.2008.12.008. Epub 2009 Jan 10. Vision Res. 2009. PMID: 19138699 Review.
Cited by
-
State-space analysis of time-varying higher-order spike correlation for multiple neural spike train data.PLoS Comput Biol. 2012;8(3):e1002385. doi: 10.1371/journal.pcbi.1002385. Epub 2012 Mar 8. PLoS Comput Biol. 2012. PMID: 22412358 Free PMC article.
-
Detecting multineuronal temporal patterns in parallel spike trains.Front Neuroinform. 2012 May 22;6:18. doi: 10.3389/fninf.2012.00018. eCollection 2012. Front Neuroinform. 2012. PMID: 22661942 Free PMC article.
-
Precise Spiking Motifs in Neurobiological and Neuromorphic Data.Brain Sci. 2022 Dec 29;13(1):68. doi: 10.3390/brainsci13010068. Brain Sci. 2022. PMID: 36672049 Free PMC article. Review.
-
Identification of interacting neural populations: methods and statistical considerations.J Neurophysiol. 2023 Sep 1;130(3):475-496. doi: 10.1152/jn.00131.2023. Epub 2023 Jul 19. J Neurophysiol. 2023. PMID: 37465897 Free PMC article. Review.
-
Time series analysis of hybrid neurophysiological data and application of mutual information.J Comput Neurosci. 2010 Aug;29(1-2):35-47. doi: 10.1007/s10827-009-0165-3. Epub 2009 May 28. J Comput Neurosci. 2010. PMID: 19475502
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources