Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Sep 9;280(36):31760-7.
doi: 10.1074/jbc.M500884200. Epub 2005 Jun 28.

p300/CBP-associated factor drives DEK into interchromatin granule clusters

Affiliations
Free article

p300/CBP-associated factor drives DEK into interchromatin granule clusters

Joanne Cleary et al. J Biol Chem. .
Free article

Abstract

DEK is a mammalian protein that has been implicated in the pathogenesis of autoimmune diseases and cancer, including acute myeloid leukemia, melanoma, glioblastoma, hepatocellular carcinoma, and bladder cancer. In addition, DEK appears to participate in multiple cellular processes, including transcriptional repression, mRNA processing, and chromatin remodeling. Sub-nuclear distribution of this protein, with the attendant functional ramifications, has remained a controversial topic. Here we report that DEK undergoes acetylation in vivo at lysine residues within the first 70 N-terminal amino acids. Acetylation of DEK decreases its affinity for DNA elements within the promoter, which is consistent with the involvement of DEK in transcriptional repression. Furthermore, deacetylase inhibition results in accumulation of DEK within interchromatin granule clusters (IGCs), sub-nuclear structures that contain RNA processing factors. Overexpression of P/CAF acetylase drives DEK into IGCs, and addition of a newly developed, synthetic, cell-permeable P/CAF inhibitor blocks this movement. To our knowledge, this is the first reported example of acetylation playing a direct role in relocation of a protein to IGCs, and this may explain how DEK can function in multiple pathways that take place in distinct sub-nuclear compartments. These findings also suggest that DEK-associated malignancies and autoimmune diseases might be amenable to treatment with agents that alter acetylation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources