Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jun 30;435(7046):1271-4.
doi: 10.1038/nature03660.

Escherichia coli swim on the right-hand side

Affiliations

Escherichia coli swim on the right-hand side

Willow R DiLuzio et al. Nature. .

Abstract

The motion of peritrichously flagellated bacteria close to surfaces is relevant to understanding the early stages of biofilm formation and of pathogenic infection. This motion differs from the random-walk trajectories of cells in free solution. Individual Escherichia coli cells swim in clockwise, circular trajectories near planar glass surfaces. On a semi-solid agar substrate, cells differentiate into an elongated, hyperflagellated phenotype and migrate cooperatively over the surface, a phenomenon called swarming. We have developed a technique for observing isolated E. coli swarmer cells moving on an agar substrate and confined in shallow, oxidized poly(dimethylsiloxane) (PDMS) microchannels. Here we show that cells in these microchannels preferentially 'drive on the right', swimming preferentially along the right wall of the microchannel (viewed from behind the moving cell, with the agar on the bottom). We propose that when cells are confined between two interfaces--one an agar gel and the second PDMS--they swim closer to the agar surface than to the PDMS surface (and for much longer periods of time), leading to the preferential movement on the right of the microchannel. Thus, the choice of materials guides the motion of cells in microchannels.

PubMed Disclaimer

Publication types

LinkOut - more resources