Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jul 28;158(1):50-60.
doi: 10.1016/j.toxlet.2005.02.007. Epub 2005 Apr 1.

Sanguinarine activates polycyclic aromatic hydrocarbon associated metabolic pathways in human oral keratinocytes and tissues

Affiliations

Sanguinarine activates polycyclic aromatic hydrocarbon associated metabolic pathways in human oral keratinocytes and tissues

Jeffrey M Karp et al. Toxicol Lett. .

Abstract

Sanguinarine's use in human clinical applications is currently controversial. While some studies have demonstrated sanguinarine's anti-inflammatory and anti-oxidant properties, other investigations reported sanguinarine's procarcinogenic effects. Like the tobacco-associated carcinogen, benzo(a)pyrene (B(a)P), sanguinarine is a polycyclic aromatic hydrocarbon (PAH). PAH exposure activates the aryl hydrocarbon transcription activating factor (AhR), resulting in nuclear translocation, binding to the aryl hydrocarbon nuclear translocator (ARNT), which thereby increases expression of a pool of carcinogen metabolizing enzymes. The goal of this study was to investigate whether sanguinarine activates this PAH-associated signaling cascade in human oral cells and tissues. Our results demonstrate that sanguinarine: (i) results in formation of the AhR-ARNT complex, (ii) induces AhR-associated gene expression, (iii) inhibits cytochrome P450 1A1 (CYP 1A1) microsomal oxidative activity and (iv) pretreatment upregulates CYP 1A1 function. Collectively, these data provide evidence that sanguinarine activates PAH-associated signaling and metabolic pathways. Notably, previous studies have demonstrated that mammalian hepatic microsomes metabolize sanguinarine to a mutagenic epoxide. Persons who respond to sanguinarine exposure with induction of primarily Phase I relative to Phase II enzymes are, therefore, at risk for sanguinarine bioactivation and its potential mutagenic effects.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

LinkOut - more resources