Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Oct 1;68(1):18-25.
doi: 10.1016/j.cardiores.2005.06.007.

Cytochrome P450 and arachidonic acid metabolites: role in myocardial ischemia/reperfusion injury revisited

Affiliations

Cytochrome P450 and arachidonic acid metabolites: role in myocardial ischemia/reperfusion injury revisited

Garrett J Gross et al. Cardiovasc Res. .

Abstract

Ischemia-reperfusion of the heart and other organs results in the accumulation of unesterified arachidonic acid (AA) via the action of membrane-bound phospholipases, primarily phospholipase A2. AA can be metabolized by the classical cyclooxygenase (COX) and lipoxygenase (LOX) pathways to well-characterized metabolites and their respective cardioprotective end products such as prostacyclin (PGI2) and 12-hydroxyeicosatetraenoic acid (12-HETE). However, it has only been recently recognized that another less well-characterized pathway of AA metabolism, the cytochrome P450 (CYP) pathway, may have important cardiovascular effects. Several lines of data support the possibility that certain CYP metabolites resulting from the hydroxylation of AA such as 20-hydroxyeicosatetraenoic acid (20-HETE) are potent vasoconstrictors and may produce detrimental effects in the heart during ischemia and pro-inflammatory effects during reperfusion. On the other hand, a group of regioisomers resulting from the epoxidation of AA, including 5,6-, 8,9-, 11,12- and 14,15-epoxyeicosatrienoic acid (EETs), have been shown to reduce ischemic and/or reperfusion injury in the heart and vasculature. This review will discuss the detrimental and beneficial actions, including the potential cellular mechanisms responsible as a result of stimulating or inhibiting the two arms of this novel CYP pathway. The therapeutic potential of increasing EET concentrations and/or reducing 20-HETE concentrations will also be addressed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources