Spot detection and image segmentation in DNA microarray data
- PMID: 16000008
- DOI: 10.2165/00822942-200504010-00001
Spot detection and image segmentation in DNA microarray data
Abstract
Following the invention of microarrays in 1994, the development and applications of this technology have grown exponentially. The numerous applications of microarray technology include clinical diagnosis and treatment, drug design and discovery, tumour detection, and environmental health research. One of the key issues in the experimental approaches utilising microarrays is to extract quantitative information from the spots, which represent genes in a given experiment. For this process, the initial stages are important and they influence future steps in the analysis. Identifying the spots and separating the background from the foreground is a fundamental problem in DNA microarray data analysis. In this review, we present an overview of state-of-the-art methods for microarray image segmentation. We discuss the foundations of the circle-shaped approach, adaptive shape segmentation, histogram-based methods and the recently introduced clustering-based techniques. We analytically show that clustering-based techniques are equivalent to the one-dimensional, standard k-means clustering algorithm that utilises the Euclidean distance.
Similar articles
-
Clustering-based spot segmentation of cDNA microarray images.Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:1828-31. doi: 10.1109/IEMBS.2010.5626430. Annu Int Conf IEEE Eng Med Biol Soc. 2010. PMID: 21096143
-
Correlation statistics for cDNA microarray image analysis.IEEE/ACM Trans Comput Biol Bioinform. 2006 Jul-Sep;3(3):232-8. doi: 10.1109/TCBB.2006.30. IEEE/ACM Trans Comput Biol Bioinform. 2006. PMID: 17048461
-
Segmentation of cDNA microarray spots using markov random field modeling.Bioinformatics. 2005 Jul 1;21(13):2994-3000. doi: 10.1093/bioinformatics/bti455. Epub 2005 Apr 19. Bioinformatics. 2005. PMID: 15840703
-
A Bayesian method for analysing spotted microarray data.Brief Bioinform. 2005 Dec;6(4):318-30. doi: 10.1093/bib/6.4.318. Brief Bioinform. 2005. PMID: 16420731 Review.
-
[Progress in a research on biochip image analysis].Zhongguo Yi Liao Qi Xie Za Zhi. 2007 Mar;31(2):108-11. Zhongguo Yi Liao Qi Xie Za Zhi. 2007. PMID: 17552173 Review. Chinese.
Cited by
-
Microarray technology in obstetrics and gynecology: a guide for clinicians.Am J Obstet Gynecol. 2006 Aug;195(2):364-72. doi: 10.1016/j.ajog.2005.12.014. Epub 2006 Apr 17. Am J Obstet Gynecol. 2006. PMID: 16615920 Free PMC article. Review.
-
Segment and fit thresholding: a new method for image analysis applied to microarray and immunofluorescence data.Anal Chem. 2015 Oct 6;87(19):9715-21. doi: 10.1021/acs.analchem.5b03159. Epub 2015 Sep 11. Anal Chem. 2015. PMID: 26339978 Free PMC article.
-
Automatic Spot Identification for High Throughput Microarray Analysis.J Bioeng Biomed Sci. 2011 Nov 18;Suppl 5:005. doi: 10.4172/2155-9538.S5-005. J Bioeng Biomed Sci. 2011. PMID: 24298393 Free PMC article.
-
A fully automatic gridding method for cDNA microarray images.BMC Bioinformatics. 2011 Apr 21;12:113. doi: 10.1186/1471-2105-12-113. BMC Bioinformatics. 2011. PMID: 21510903 Free PMC article.
-
VereFlu™: an integrated multiplex RT-PCR and microarray assay for rapid detection and identification of human influenza A and B viruses using lab-on-chip technology.Arch Virol. 2011 Aug;156(8):1371-8. doi: 10.1007/s00705-011-0999-7. Epub 2011 Apr 19. Arch Virol. 2011. PMID: 21503642 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources