Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 May;52(1-2):36-40.
doi: 10.14411/fp.2005.005.

How do microsporidia invade cells?

Affiliations
Free article
Review

How do microsporidia invade cells?

Caspar Franzen. Folia Parasitol (Praha). 2005 May.
Free article

Abstract

Microsporidia are obligate intracellular eukaryotic parasites that utilize a unique mechanism to infect host cells. One of the main characteristics of all microsporidia is that they produce spores containing an extrusion apparatus that consists of a coiled polar tube ending in an anchoring disc at the apical part of the spore. With appropriate conditions inside a suitable host, the polar tube is discharged through the thin anterior end of the spore, thereby penetrating a new host cell for inoculating the infective sporoplasm into the new host cell. This method of invading new host cells is one of the most sophisticated infection mechanisms in biology and ensures that the microsporidia enter the host cell unrecognized and protected from the host defence reactions. Recent studies have shown that microsporidia gain access to host cells by phagocytosis as well. However, after phagocytosis, the special infection mechanism of the microsporidia is used to escape from the maturing phagosomes and to infect the cytoplasm of the cells. Gaining access to cells by endocytosis, and escaping destruction in the phago-/endo-/lysosome by egressing quickly from the phagocytic vacuole to multiply outside the lysosome, is a common phenomenon in biology that has been evolved several times during evolution. How this is put into execution by the microsporidia is an inimitable principle by which an obligate intracellular organism has managed this problem. The extrusion apparatus of the microsporidia has obviously ensured the success of this phylum during evolution, resulting in a group of obligate intracellular organisms, capable of infecting almost any type of host and cell.

PubMed Disclaimer

Publication types