Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Aug 1;67(2):263-73.
doi: 10.1016/j.cardiores.2005.03.006. Epub 2005 Apr 21.

Non-equilibrium behavior of HCN channels: insights into the role of HCN channels in native and engineered pacemakers

Affiliations

Non-equilibrium behavior of HCN channels: insights into the role of HCN channels in native and engineered pacemakers

Ezana M Azene et al. Cardiovasc Res. .

Abstract

Objective: I(f), encoded by the hyperpolarization-activated, cyclic nucleotide-modulated (HCN) channel gene family, modulates cardiac pacing. During cardiac pacing, changes in membrane potential are rapid, preventing the very slow HCN channels from reaching equilibrium. Here, we examined the properties of HCN channels under non-equilibrium conditions to shed insight into how different HCN isoforms contribute to cardiac pacing.

Methods and results: HCN1, 2 and 4 channels were heterologously expressed in Xenopus laevis oocytes or mammalian Cos7 cells and subjected to voltage clamp. We found that HCN1 channel activation (V1/2) depended strongly on the holding potential (V(H)) for short (100 ms; V1/2=-118 mV, -78 mV and -19 mV for V(H)= +70, -75 and -140 mV, respectively, in Xenopus oocytes) but not long (300-ms) test-pulses, hinting that shifts of V1/2 under non-equilibrium conditions may alter the impact of I(f) in different phases of the cardiac circle. Consistent with this notion, when a train of SA nodal-like action potentials was applied in voltage-clamp experiments, HCN1 exhibited pronounced current-voltage (IV)-hysteresis. Using computational modeling, we demonstrate that the intrinsically sluggish HCN1 activation kinetics underlie their IV-hysteretic behavior and do not hinder the ability to modulate cardiac pacing. By contrast, HCN4 did not exhibit IV-hysteresis. This difference can be attributed to the relatively large activation time constant and markedly delayed onsets of time-dependent HCN4 currents. Indeed, HCN2 channels, which have intermediate activation time constants and delays, displayed and intermediate hysteretic phenotype.

Conclusion: We conclude that non-equilibrium properties of HCN channels contribute to cardiac pacing. These results provide insight for tuning the firing rate of endogenous and induced pacemakers using engineered HCN constructs with distinct gating phenotypes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources