Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Oct 20;24(46):6945-56.
doi: 10.1038/sj.onc.1208842.

Betulinic acid as new activator of NF-kappaB: molecular mechanisms and implications for cancer therapy

Affiliations

Betulinic acid as new activator of NF-kappaB: molecular mechanisms and implications for cancer therapy

Hubert Kasperczyk et al. Oncogene. .

Abstract

Recent evidence demonstrates that the anticancer activity of betulinic acid (BetA) can be markedly increased by combination protocols, for example with chemotherapy, ionizing radiation or TRAIL. Since nuclear factor-kappaB (NF-kappaB), a key regulator of stress-induced transcriptional activation, has been implicated in mediating apoptosis resistance, we investigated the role of NF-kappaB in BetA-induced apoptosis. Here, we provide for the first time evidence that BetA activates NF-kappaB in a variety of tumor cell lines. NF-kappaB DNA-binding complexes induced by BetA consisted of p50 and p65 subunits. Nuclear translocation of p65 was also confirmed by immunofluorescence microscopy. BetA-induced NF-kappaB activation involved increased IKK activity and phosphorylation of IkappaB-alpha at serine 32/36 followed by degradation of IkappaB-alpha. Reporter assays revealed that NF-kappaB activated by BetA is transcriptionally active. Interestingly, inhibition of BetA-induced NF-kappaB activation by different chemical inhibitors (proteasome inhibitor, antioxidant, IKK inhibitor) attenuated BetA-induced apoptosis. Importantly, specific NF-kappaB inhibition by transient or stable expression of IkappaB-alpha super-repressor inhibited BetA-induced apoptosis in SH-EP neuroblastoma cells, while transient expression of IkappaB-alpha super-repressor had no influence on BetA-induced apoptosis in two other cell lines. Thus, our findings that activation of NF-kappaB by BetA promotes BetA-induced apoptosis in a cell type-specific fashion indicate that NF-kappaB inhibitors in combination with BetA would have no therapeutic benefit or could even be contraproductive in certain tumors, which has important implications for the design of BetA-based combination protocols.

PubMed Disclaimer

Publication types