Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jul-Aug;13(4):390-7.
doi: 10.1111/j.1067-1927.2005.130406.x.

Acceleration of wound healing in healing-impaired db/db mice with a photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2

Affiliations

Acceleration of wound healing in healing-impaired db/db mice with a photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2

Kiyohaya Obara et al. Wound Repair Regen. 2005 Jul-Aug.

Abstract

Application of ultraviolet light irradiation to a photocrosslinkable chitosan (Az-CH-LA) aqueous solution including fibroblast growth factor-2 (FGF-2) results within 30 seconds in an insoluble, flexible hydrogel. The FGF-2 molecules retained in the chitosan hydrogel remain biologically active and are released from the chitosan hydrogel upon in vivo biodegradation of the hydrogel. To evaluate the accelerating effect on wound healing of this hydrogel, full-thickness skin incisions were made in the backs of healing-impaired diabetic (db/db) mice and their normal (db/+) littermates. The mice were later killed, and histological sections of the wound were prepared. The degree of wound healing was evaluated using several histological parameters such as the rate of contraction, epithelialization, and tissue filling. Application of the chitosan hydrogel significantly advanced the rate of contraction on Days 0 to 2 in db/db and db/+ mice. Although the addition of FGF-2 into the chitosan hydrogel in db/+ mice had little effect, application of the chitosan hydrogel-containing FGF-2 further accelerated the adjusted tissue filling rate (Days 2 to 4 and Days 4 to 8) in db/db mice. Furthermore, the chitosan hydrogel-containing FGF-2 markedly increased the number of CD-34-positive vessels in the wound areas of db/db mice on Day 4. Thus, the application of chitosan hydrogel-containing FGF-2 onto a healing-impaired wound induces significant wound contraction and accelerates wound closure and healing.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources