Variable selection for marginal longitudinal generalized linear models
- PMID: 16011698
- DOI: 10.1111/j.1541-0420.2005.00331.x
Variable selection for marginal longitudinal generalized linear models
Abstract
Variable selection is an essential part of any statistical analysis and yet has been somewhat neglected in the context of longitudinal data analysis. In this article, we propose a generalized version of Mallows's C(p) (GC(p)) suitable for use with both parametric and nonparametric models. GC(p) provides an estimate of a measure of model's adequacy for prediction. We examine its performance with popular marginal longitudinal models (fitted using GEE) and contrast results with what is typically done in practice: variable selection based on Wald-type or score-type tests. An application to real data further demonstrates the merits of our approach while at the same time emphasizing some important robust features inherent to GC(p).
Similar articles
-
A note on the use of unbiased estimating equations to estimate correlation in analysis of longitudinal trials.Biom J. 2009 Feb;51(1):5-18. doi: 10.1002/bimj.200710493. Biom J. 2009. PMID: 19197953
-
Efficient parameter estimation in longitudinal data analysis using a hybrid GEE method.Biostatistics. 2009 Jul;10(3):436-45. doi: 10.1093/biostatistics/kxp002. Epub 2009 Apr 4. Biostatistics. 2009. PMID: 19346528
-
A nonparametric smoothing method for assessing GEE models with longitudinal binary data.Stat Med. 2008 Sep 30;27(22):4428-39. doi: 10.1002/sim.3315. Stat Med. 2008. PMID: 18613210
-
Handling drop-out in longitudinal studies.Stat Med. 2004 May 15;23(9):1455-97. doi: 10.1002/sim.1728. Stat Med. 2004. PMID: 15116353 Review.
-
Use of conditional and marginal odds-ratios for analysing familial aggregation of binary data.Genet Epidemiol. 2000 Mar;18(3):193-202. doi: 10.1002/(SICI)1098-2272(200003)18:3<193::AID-GEPI1>3.0.CO;2-W. Genet Epidemiol. 2000. PMID: 10723105 Review.
Cited by
-
Feature selection for high-dimensional temporal data.BMC Bioinformatics. 2018 Jan 23;19(1):17. doi: 10.1186/s12859-018-2023-7. BMC Bioinformatics. 2018. PMID: 29357817 Free PMC article.
-
Maternal and child patterns of Medicaid retention: a prospective cohort study.BMC Pediatr. 2018 Aug 21;18(1):275. doi: 10.1186/s12887-018-1242-4. BMC Pediatr. 2018. PMID: 30131062 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Miscellaneous