Vestibular dysfunction of patients with mutations of Connexin 26
- PMID: 16012344
- DOI: 10.1097/00001756-200508010-00009
Vestibular dysfunction of patients with mutations of Connexin 26
Abstract
The gap junctional network of the inner ear plays an important role in cochlear ionic homoeostasis. Mutations of connexin 26 can induce different types of hearing loss and even deafness. Therefore, it is hypothesized that gap junctions of the human vestibular organ are functionally impaired by mutations of connexin 26. In a prospective, nonrandomized study, the functional status of the semicircular canals and the otolith organs was assessed in one homozygous and six heterozygous carriers of connexin 26 mutations. Five out of seven patients (71.4%) had pathological vestibular evoked myogenic potentials, indicating a loss of saccular function. The utricular function (as tested by subjective haptic vertical) and the function of the semicircular canals (as tested by recording the vestibuloocular reflex) were largely normal. Thus, connexin 26 mutations can be associated with saccular defects of the vestibular receptors.
Similar articles
-
Vestibular function of patients with profound deafness related to GJB2 mutation.Acta Otolaryngol. 2010 Sep;130(9):990-5. doi: 10.3109/00016481003596508. Acta Otolaryngol. 2010. PMID: 20377502
-
Neurotological and neuroanatomical changes in the connexin-26-related HID/KID syndrome.Audiol Neurootol. 2006;11(4):242-8. doi: 10.1159/000093110. Epub 2006 May 4. Audiol Neurootol. 2006. PMID: 16679758
-
Vestibular functions of hereditary hearing loss patients with GJB2 mutations.Audiol Neurootol. 2015;20(3):147-52. doi: 10.1159/000368292. Epub 2015 Mar 25. Audiol Neurootol. 2015. PMID: 25824904
-
Neural basis of new clinical vestibular tests: otolithic neural responses to sound and vibration.Clin Exp Pharmacol Physiol. 2014 May;41(5):371-80. doi: 10.1111/1440-1681.12222. Clin Exp Pharmacol Physiol. 2014. PMID: 24754528 Review.
-
A critical review of the neurophysiological evidence underlying clinical vestibular testing using sound, vibration and galvanic stimuli.Clin Neurophysiol. 2010 Feb;121(2):132-44. doi: 10.1016/j.clinph.2009.09.027. Epub 2009 Nov 7. Clin Neurophysiol. 2010. PMID: 19897412 Review.
Cited by
-
The Interplay of Cx26, Cx32, Cx37, Cx40, Cx43, Cx45, and Panx1 in Inner-Ear Development of Yotari (dab1-/-) Mice and Humans.Biomedicines. 2022 Mar 3;10(3):589. doi: 10.3390/biomedicines10030589. Biomedicines. 2022. PMID: 35327391 Free PMC article.
-
Perspectives in vestibular diagnostics and therapy.GMS Curr Top Otorhinolaryngol Head Neck Surg. 2011;10:Doc05. doi: 10.3205/cto000078. Epub 2012 Apr 26. GMS Curr Top Otorhinolaryngol Head Neck Surg. 2011. PMID: 22558055 Free PMC article.
-
DFNB1 Non-syndromic Hearing Impairment: Diversity of Mutations and Associated Phenotypes.Front Mol Neurosci. 2017 Dec 22;10:428. doi: 10.3389/fnmol.2017.00428. eCollection 2017. Front Mol Neurosci. 2017. PMID: 29311818 Free PMC article. Review.
-
Complex Membrane Channel Blockade: A Unifying Hypothesis for the Prodromal and Acute Neuropsychiatric Sequelae Resulting from Exposure to the Antimalarial Drug Mefloquine.J Parasitol Res. 2015;2015:368064. doi: 10.1155/2015/368064. Epub 2015 Oct 20. J Parasitol Res. 2015. PMID: 26576290 Free PMC article. Review.
-
Comparison of vestibular function in hereditary hearing loss patients with GJB2, CDH23, and SLC26A4 variants.Sci Rep. 2024 May 8;14(1):10596. doi: 10.1038/s41598-024-61442-3. Sci Rep. 2024. PMID: 38720048 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous