Pattern vectors from algebraic graph theory
- PMID: 16013758
- DOI: 10.1109/TPAMI.2005.145
Pattern vectors from algebraic graph theory
Abstract
Graph structures have proven computationally cumbersome for pattern analysis. The reason for this is that, before graphs can be converted to pattern vectors, correspondences must be established between the nodes of structures which are potentially of different size. To overcome this problem, in this paper, we turn to the spectral decomposition of the Laplacian matrix. We show how the elements of the spectral matrix for the Laplacian can be used to construct symmetric polynomials that are permutation invariants. The coefficients of these polynomials can be used as graph features which can be encoded in a vectorial manner. We extend this representation to graphs in which there are unary attributes on the nodes and binary attributes on the edges by using the spectral decomposition of a Hermitian property matrix that can be viewed as a complex analogue of the Laplacian. To embed the graphs in a pattern space, we explore whether the vectors of invariants can be embedded in a low-dimensional space using a number of alternative strategies, including principal components analysis (PCA), multidimensional scaling (MDS), and locality preserving projection (LPP). Experimentally, we demonstrate that the embeddings result in well-defined graph clusters. Our experiments with the spectral representation involve both synthetic and real-world data. The experiments with synthetic data demonstrate that the distances between spectral feature vectors can be used to discriminate between graphs on the basis of their structure. The real-world experiments show that the method can be used to locate clusters of graphs.
Similar articles
-
Indexing hierarchical structures using graph spectra.IEEE Trans Pattern Anal Mach Intell. 2005 Jul;27(7):1125-40. doi: 10.1109/TPAMI.2005.142. IEEE Trans Pattern Anal Mach Intell. 2005. PMID: 16013759
-
Generalizing Swendsen-Wang to sampling arbitrary posterior probabilities.IEEE Trans Pattern Anal Mach Intell. 2005 Aug;27(8):1239-53. doi: 10.1109/TPAMI.2005.161. IEEE Trans Pattern Anal Mach Intell. 2005. PMID: 16119263
-
Generic model abstraction from examples.IEEE Trans Pattern Anal Mach Intell. 2005 Jul;27(7):1141-56. doi: 10.1109/TPAMI.2005.139. IEEE Trans Pattern Anal Mach Intell. 2005. PMID: 16013760
-
Reduced graphs and their applications in chemoinformatics.Methods Mol Biol. 2011;672:197-212. doi: 10.1007/978-1-60761-839-3_8. Methods Mol Biol. 2011. PMID: 20838970 Review.
-
A shape representation for computer vision based on differential topology.Biosystems. 1995;34(1-3):197-224. doi: 10.1016/0303-2647(94)01447-f. Biosystems. 1995. PMID: 7727700 Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous