Million-fold preconcentration of proteins and peptides by nanofluidic filter
- PMID: 16013838
- DOI: 10.1021/ac050321z
Million-fold preconcentration of proteins and peptides by nanofluidic filter
Abstract
We have developed a highly efficient microfluidic sample preconcentration device based on the electrokinetic trapping mechanism enabled by nanofluidic filters. The device, fabricated by standard photolithography and etching techniques, generates an extended space charge region within a microchannel, which was used to both collect and trap the molecules efficiently. The electrokinetic trapping and collection can be maintained for several hours, and concentration factors as high as 10(6)-10(8) have been demonstrated. This device could be useful in various bioanalysis microsystems, due to its simplicity, performance, robustness, and integrabilty to other separation and detection systems.
Comment in
-
Protein preconcentrator.Anal Chem. 2005 Aug 1;77(15):283A. doi: 10.1021/ac053441f. Anal Chem. 2005. PMID: 16134286 No abstract available.
Similar articles
-
Microfluidic chemical cytometry based on modulation of local field strength.Chem Commun (Camb). 2006 Sep 7;(33):3528-30. doi: 10.1039/b605722e. Epub 2006 Jul 14. Chem Commun (Camb). 2006. PMID: 16921434
-
Decreasing effective nanofluidic filter size by modulating electrical double layers: separation enhancement in microfabricated nanofluidic filters.Electrophoresis. 2008 Dec;29(23):4646-51. doi: 10.1002/elps.200800256. Electrophoresis. 2008. PMID: 19016242
-
Vertical arrays of nanofluidic channels fabricated without nanolithography.Lab Chip. 2009 Jun 7;9(11):1556-60. doi: 10.1039/b819520j. Epub 2009 Mar 3. Lab Chip. 2009. PMID: 19458862
-
High-performance bioanalysis based on ion concentration polarization of micro-/nanofluidic devices.Anal Bioanal Chem. 2019 Jul;411(18):4007-4016. doi: 10.1007/s00216-019-01756-8. Epub 2019 Apr 10. Anal Bioanal Chem. 2019. PMID: 30972474 Review.
-
Technologies for nanofluidic systems: top-down vs. bottom-up--a review.Lab Chip. 2005 May;5(5):492-500. doi: 10.1039/b416951d. Epub 2005 Mar 22. Lab Chip. 2005. PMID: 15856084 Review.
Cited by
-
Fabrication and characterization of sub-100/10 nm planar nanofluidic channels by triple thermal oxidation and silicon-glass anodic bonding.Biomicrofluidics. 2014 Aug 25;8(5):052106. doi: 10.1063/1.4894160. eCollection 2014 Sep. Biomicrofluidics. 2014. PMID: 25538802 Free PMC article.
-
Numerical Simulation of Continuous Extraction of Li+ from High Mg2+/Li+ Ratio Brines Based on Free Flow Ion Concentration Polarization Microfluidic System.Membranes (Basel). 2021 Sep 10;11(9):697. doi: 10.3390/membranes11090697. Membranes (Basel). 2021. PMID: 34564514 Free PMC article.
-
Thermoplastic nanofluidic devices for biomedical applications.Lab Chip. 2017 Jan 31;17(3):362-381. doi: 10.1039/c6lc01173j. Lab Chip. 2017. PMID: 28009883 Free PMC article. Review.
-
Liquid glass electrodes for nanofluidics.Nat Nanotechnol. 2010 Jun;5(6):412-6. doi: 10.1038/nnano.2010.81. Epub 2010 May 16. Nat Nanotechnol. 2010. PMID: 20473300 Free PMC article.
-
Enhancing protease activity assay in droplet-based microfluidics using a biomolecule concentrator.J Am Chem Soc. 2011 Jul 13;133(27):10368-71. doi: 10.1021/ja2036628. Epub 2011 Jun 20. J Am Chem Soc. 2011. PMID: 21671557 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources