Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jul-Aug;52(4):291-7.
doi: 10.1111/j.1550-7408.2005.00045.x.

Genomic and proteomic evidence for a second family of dense core granule cargo proteins in Tetrahymena thermophila

Affiliations

Genomic and proteomic evidence for a second family of dense core granule cargo proteins in Tetrahymena thermophila

Grant R Bowman et al. J Eukaryot Microbiol. 2005 Jul-Aug.

Abstract

In addition to a family of structurally related proteins encoded by the Granule lattice (GRL) genes, the dense core granules in Tetrahymena thermophila contain a second, more heterogeneous family of proteins that can be defined by the presence of a domain homologous to beta/gamma-crystallins. The founding members of the family, Induced during Granule Regeneration 1 (IGR1) and Granule Tip 1 (GRT1), were identified in previous screens for granule components. Analysis of the recently sequenced T. thermophila macronuclear genome has now uncovered 11 additional related genes. All family members have a single beta/gamma-crystallin domain, but the overall predicted organization of family members is highly variable, and includes three other motifs that are conserved between subsets of family members. To demonstrate that these proteins are present within granules, polypeptides from a subcellular fraction enriched in granules were analyzed by mass spectrometry. This positively identified four of the predicted novel beta/gamma-crystallin domain proteins. Both the functional evidence for IGR1 and GRT1 and the variability in the overall structure of this new protein family suggest that its members play roles that are distinct from those of the GRL family.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources