Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development
- PMID: 16014714
- PMCID: PMC6725437
- DOI: 10.1523/JNEUROSCI.0778-05.2005
Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development
Abstract
During embryonic development of the mammalian brain, the average cell-cycle length of progenitor cells in the ventricular zone is known to increase. However, for any given region of the developing cortex and stage of neurogenesis, the length of the cell cycle is thought to be similar in the two coexisting subpopulations of progenitors [i.e., those undergoing (symmetric) proliferative divisions and those undergoing (either asymmetric or symmetric) neuron-generating divisions]. Using cumulative bromodeoxyuridine labeling of Tis21-green fluorescent protein knock-in mouse embryos, in which these two subpopulations of progenitors can be distinguished in vivo, we now show that at the onset as well as advanced stages of telencephalic neurogenesis, progenitors undergoing neuron-generating divisions are characterized by a significantly longer cell cycle than progenitors undergoing proliferative divisions. In addition, we find that the recently characterized neuronal progenitors dividing at the basal side of the ventricular zone and in the subventricular zone have a longer G(2) phase than those dividing at the ventricular surface. These findings are consistent with the hypothesis (Calegari and Huttner, 2003) that cell-cycle lengthening can causally contribute to neural progenitors switching from proliferative to neuron-generating divisions and may have important implications for the expansion of somatic stem cells in general.
Figures



References
-
- Burdon T, Smith A, Savatier P (2002) Signalling, cell cycle and pluripotency in embryonic stem cells. Trends Cell Biol 12: 432-438. - PubMed
-
- Calegari F, Huttner WB (2003) An inhibition of cyclin-dependent kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces premature neurogenesis. J Cell Sci 116: 4947-4955. - PubMed
-
- Canzoniere D, Farioli-Vecchioli S, Conti F, Ciotti MT, Tata AM, Augusti-Tocco G, Mattei E, Lakshmana MK, Krizhanovsky V, Reeves SA, Giovannoni R, Castano F, Servadio A, Ben-Arie N, Tirone F (2004) Dual control of neurogenesis by PC3 through cell cycle inhibition and induction of Math1. J Neurosci 24: 3355-3369. - PMC - PubMed
-
- Caviness Jr VS, Takahashi T, Nowakowski RS (1995) Numbers, time and neocortical neuronogenesis: a general developmental and evolutionary model. Trends Neurosci 18: 379-383. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical