Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Jun 15;267(17):11881-7.

Regio- and enantioselectivity of soybean fatty acid epoxide hydrolase

Affiliations
  • PMID: 1601858
Free article

Regio- and enantioselectivity of soybean fatty acid epoxide hydrolase

E Blée et al. J Biol Chem. .
Free article

Abstract

Soluble epoxide hydrolase purified from soybean catalyzes trans-addition of water across the oxirane ring of cis-9,10-epoxystearic acid with inversion of configuration at the attacked carbon, yielding threo-9,10-dihydroxystearic acid. Kinetic analyses of the progress curves, obtained at low substrate concentrations (i.e. [S] much less than Km), and determination of the enantiomeric excess of the residual substrate by chiral-phase high-performance liquid chromatography at different reaction times, indicate that the epoxide hydrolase hydrates preferentially cis-9R, 10S-epoxystearic acid (V/Km ratio, approximately 20). Interestingly, this enantiomer is obtained by epoxidation of oleic acid catalyzed by peroxygenase, a hydroperoxide-dependent oxidase, we have previously described in soybean (Blée, E., and Schuber, F. (1990) J.Biol. Chem. 265, 12887-12894). For the epoxide hydrolase to show high enantioselectivity there must be a free carboxylic acid functionality on the substrate which probably influences its positioning within the active site. This selectivity, which in principle can be used for kinetic resolution of the cis-9,10-epoxystearic acid enantiomers, is much reduced with methyl cis-9,10-epoxystearate. 18O-Labeling experiments indicate that water attacks both cis-9,10-epoxystearic acid enantiomers on the oxirane carbon which has the S-chirality. Results show that soybean epoxide hydrolase produces exclusively threo-9R,10R-dihydroxystearic acid, i.e. a naturally occurring metabolite in higher plants. cis-9,10-Epoxy-18-hydroxystearic acid, a cutin monomer, was a poorer substrate of the epoxide hydrolase than 9,10-epoxystearic acid (V/Km ratio for the preferred enantiomers, approximately 19). From a physiological point of view, peroxygenase and this newly described epoxide hydrolase could be responsible, in vivo, for the biosynthesis of a class of oxygenated fatty acid compounds known to be involved in cutin monomers production and in plant defense mechanisms.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources