Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Jul;5(7):919-38.
doi: 10.1517/14712598.5.7.919.

HLA class I transgenic mice: development, utilisation and improvement

Affiliations
Review

HLA class I transgenic mice: development, utilisation and improvement

Steve Pascolo. Expert Opin Biol Ther. 2005 Jul.

Abstract

Classical major histocompatibility complex (MHC) class I antigens are trimeric molecules found on the surface of nucleated cells in all jawed vertebrates. MHC I are recognised by two families of receptors: clonotypic T cell receptors expressed on the surface of CD8+ cytotoxic T lymphocytes (CTLs), and monomorphic receptors expressed by both natural killer cells and CTLs. The production of MHC I molecules within the cells is a sequential process performed with the help of interacting proteins: proteases, chaperones, transporters and so on. Although largely homologous in their structure, organisation and function, the human and mouse MHC I antigen processing and presentation machineries show fine differences. Transgenesis and 'knockout' or 'knock-in' technologies permit the addition of relevant human genes or the replacement of mouse genes by their human orthologues in order to produce immunologically humanised mice. Such experimental animals are especially relevant for the comparative evaluation of immunotherapies and for the characterisation of MHC I peptide epitopes. This review presents the similarities and differences between mouse and human MHC I antigen processing machinery, and describes the development and utilisation of improving mouse models of human cytotoxic T cell immunity.

PubMed Disclaimer

Substances

LinkOut - more resources