Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005;37(3):186-95.
doi: 10.1080/07853890510007287.

Mutations in the Kir6.2 subunit of the KATP channel and permanent neonatal diabetes: new insights and new treatment

Affiliations
Review

Mutations in the Kir6.2 subunit of the KATP channel and permanent neonatal diabetes: new insights and new treatment

Annabelle S Slingerland et al. Ann Med. 2005.

Abstract

Permanent neonatal diabetes (PNDM) is diagnosed in the first three months of life and is a major management problem as patients require lifelong insulin injections. Recently, activating mutations in the KCNJ11 gene which encodes the Kir6.2 subunit of the KATP channels in the pancreatic beta-cells were found to be an important cause of PNDM. The mutated KATP channels do not close in the presence of adenosine triphosphate (ATP) so the beta-cell membrane is hyperpolarized and insulin secretion does not occur. Some patients have DEND syndrome (developmental delay, epilepsy and neonatal diabetes) with the neurological features arising from mutated KATP channels in muscle, nerve and brain. Defining a genetic aetiology has not only given insights into clinical classification and disease mechanism, but has also influenced treatment. Sulphonylureas, by binding the sulphonylurea receptor, can close the KATP channel. This has led to patients who were insulin-dependent being able to discontinue insulin injections and achieve excellent control with sulphonylurea tablets. In this article we discuss the work that established Kir6.2 mutations as a common cause of neonatal diabetes, the clinical features, the underlying mechanism and the impact on patient treatment.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources