Fine mapping of the nematode resistance gene Mi-3 in Solanum peruvianum and construction of a S. lycopersicum DNA contig spanning the locus
- PMID: 16021467
- DOI: 10.1007/s00438-005-1149-2
Fine mapping of the nematode resistance gene Mi-3 in Solanum peruvianum and construction of a S. lycopersicum DNA contig spanning the locus
Abstract
Currently, the only genetic resistance against root-knot nematodes in the cultivated tomato Solanum lycopersicum (Lycopersicon esculentum) is due to the gene Mi-1. Another resistance gene, Mi-3, identified in the related wild species Solanum peruvianum (Lycopersicon peruvianum) confers resistance to nematodes that are virulent on tomato lines that carry Mi-1, and is effective at temperatures at which Mi-1 is not effective (above 30 degrees C). Two S. peruvianum populations segregating for Mi-3 were used to develop a high-resolution map of the Mi-3 region of chromosome 12. S. lycopersicum BACs carrying flanking markers were identified and used to construct a contig spanning the Mi-3 region. Markers generated from BAC-end sequences were mapped in S. peruvianum plants in which recombination events had occurred near Mi-3. Comparison of the S. peruvianum genetic map with the physical map of S. lycopersicum indicated that marker order is conserved between S. lycopersicum and S. peruvianum. The 600 kb contig between Mi-3-flanking markers TG180 and NR18 corresponds to a genetic distance of about 7.2 cM in S. peruvianum. We have identified a marker that completely cosegregates with Mi-3, as well as flanking markers within 0.25 cM of the gene. These markers can be used to introduce Mi-3 into cultivated tomato, either by conventional breeding or cloning strategies.
Similar articles
-
Tomato Natural Resistance Genes in Controlling the Root-Knot Nematode.Genes (Basel). 2019 Nov 14;10(11):925. doi: 10.3390/genes10110925. Genes (Basel). 2019. PMID: 31739481 Free PMC article. Review.
-
The heat-stable root-knot nematode resistance gene Mi-9 from Lycopersicon peruvianum is localized on the short arm of chromosome 6.Theor Appl Genet. 2003 Feb;106(3):478-84. doi: 10.1007/s00122-002-1106-y. Epub 2002 Oct 23. Theor Appl Genet. 2003. PMID: 12589548
-
The root-knot nematode resistance gene (Mi) in tomato: construction of a molecular linkage map and identification of dominant cDNA markers in resistant genotypes.Plant J. 1992 Nov;2(6):971-82. Plant J. 1992. PMID: 1302643
-
Genetic and physical localization of the root-knot nematode resistance locus mi in tomato.Mol Gen Genet. 1998 Feb;257(3):376-85. doi: 10.1007/s004380050660. Mol Gen Genet. 1998. PMID: 9520273
-
The inheritance of chilling tolerance in tomato (Lycopersicon spp.).Plant Biol (Stuttg). 2005 Mar;7(2):118-30. doi: 10.1055/s-2005-837495. Plant Biol (Stuttg). 2005. PMID: 15822007 Review.
Cited by
-
Determination of preferred pH for root-knot nematode aggregation using pluronic F-127 gel.J Chem Ecol. 2009 Oct;35(10):1242-51. doi: 10.1007/s10886-009-9703-8. Epub 2009 Oct 20. J Chem Ecol. 2009. PMID: 19838866 Free PMC article.
-
Integrated signaling networks in plant responses to sedentary endoparasitic nematodes: a perspective.Plant Cell Rep. 2015 Jan;34(1):5-22. doi: 10.1007/s00299-014-1676-6. Epub 2014 Sep 11. Plant Cell Rep. 2015. PMID: 25208657 Review.
-
Meloidogyne enterolobii, a Major Threat to Tomato Production: Current Status and Future Prospects for Its Management.Front Plant Sci. 2020 Nov 16;11:606395. doi: 10.3389/fpls.2020.606395. eCollection 2020. Front Plant Sci. 2020. PMID: 33304376 Free PMC article. Review.
-
Tomato Natural Resistance Genes in Controlling the Root-Knot Nematode.Genes (Basel). 2019 Nov 14;10(11):925. doi: 10.3390/genes10110925. Genes (Basel). 2019. PMID: 31739481 Free PMC article. Review.
-
Pattern-triggered immunity against root-knot nematode infection: A minireview.Physiol Plant. 2022 Mar;174(2):e13680. doi: 10.1111/ppl.13680. Physiol Plant. 2022. PMID: 35362104 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources