Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Sep 1;70(5):676-85.
doi: 10.1016/j.bcp.2005.06.002.

Structural requirements of Dictyostelium differentiation-inducing factors for their stalk-cell-inducing activity in Dictyostelium cells and anti-proliferative activity in K562 human leukemic cells

Affiliations

Structural requirements of Dictyostelium differentiation-inducing factors for their stalk-cell-inducing activity in Dictyostelium cells and anti-proliferative activity in K562 human leukemic cells

Naomi Gokan et al. Biochem Pharmacol. .

Abstract

The differentiation-inducing factor-1 (DIF-1) is a lipophilic signal molecule (chlorinated alkylphenone) that induces stalk-cell differentiation in the cellular slime mould Dictyostelium discoideum. It has also been shown that DIF-1 and its derivative (DIF-3) suppress cell growth in mammalian tumor cells. In the present study, in order to assess the chemical structure-effect relationship of DIF derivatives and to develop useful agents for the study of both Dictyostelium development and cancer biology, we synthesized 28 analogues of DIF-1 and DIF-3 and investigated their stalk-cell-inducing activity in Dictyostelium HM44 cells (mutant strain) and anti-proliferative activity in human leukemia K562 cells. HM44 cells are defective in endogenous DIF-1 production and should be suitable for the assay for stalk-cell-inducing activity of DIF analogues. DIF-1 and some of its derivatives at nanomolar levels were good stalk-cell inducers in HM44 cells, whereas DIF-3 and some DIF-3 derivatives at micromolar levels were potent anti-proliferative agents in K562 cells. We also tried to search for antagonistic molecules against DIF-1 and DIF-3 but failed to find such molecules from the analogues used here. The present findings would give us hints for identifying the target molecule(s) of DIFs and also for developing novel anti-cancer drugs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources