Integrative model of the response of yeast to osmotic shock
- PMID: 16025103
- DOI: 10.1038/nbt1114
Integrative model of the response of yeast to osmotic shock
Erratum in
- Nat Biotechnol. 2006 Oct;24(10):1293
Abstract
Integration of experimental studies with mathematical modeling allows insight into systems properties, prediction of perturbation effects and generation of hypotheses for further research. We present a comprehensive mathematical description of the cellular response of yeast to hyperosmotic shock. The model integrates a biochemical reaction network comprising receptor stimulation, mitogen-activated protein kinase cascade dynamics, activation of gene expression and adaptation of cellular metabolism with a thermodynamic description of volume regulation and osmotic pressure. Simulations agree well with experimental results obtained under different stress conditions or with specific mutants. The model is predictive since it suggests previously unrecognized features of the system with respect to osmolyte accumulation and feedback control, as confirmed with experiments. The mathematical description presented is a valuable tool for future studies on osmoregulation in yeast and-with appropriate modifications-other organisms. It also serves as a starting point for a comprehensive description of cellular signaling.
Comment in
-
Closing the circle of osmoregulation.Nat Biotechnol. 2005 Aug;23(8):941-2. doi: 10.1038/nbt0805-941. Nat Biotechnol. 2005. PMID: 16082361 No abstract available.
Similar articles
-
Closing the circle of osmoregulation.Nat Biotechnol. 2005 Aug;23(8):941-2. doi: 10.1038/nbt0805-941. Nat Biotechnol. 2005. PMID: 16082361 No abstract available.
-
A model-based study delineating the roles of the two signaling branches of Saccharomyces cerevisiae, Sho1 and Sln1, during adaptation to osmotic stress.Phys Biol. 2009 Aug 6;6(3):036019. doi: 10.1088/1478-3975/6/3/036019. Phys Biol. 2009. PMID: 19657148
-
Yeast osmoregulation.Methods Enzymol. 2007;428:29-45. doi: 10.1016/S0076-6879(07)28002-4. Methods Enzymol. 2007. PMID: 17875410 Review.
-
Modelling the dynamics of the yeast pheromone pathway.Yeast. 2004 Jul 30;21(10):831-50. doi: 10.1002/yea.1122. Yeast. 2004. PMID: 15300679
-
New aspects on phosphate sensing and signalling in Saccharomyces cerevisiae.FEMS Yeast Res. 2006 Mar;6(2):171-6. doi: 10.1111/j.1567-1364.2006.00036.x. FEMS Yeast Res. 2006. PMID: 16487340 Review.
Cited by
-
An integrated pathway system modeling of Saccharomyces cerevisiae HOG pathway: a Petri net based approach.Mol Biol Rep. 2013 Feb;40(2):1103-25. doi: 10.1007/s11033-012-2153-3. Epub 2012 Oct 21. Mol Biol Rep. 2013. PMID: 23086300
-
Increased xerotolerance of Saccharomyces cerevisiae during an osmotic pressure ramp over several generations.Microb Biotechnol. 2021 Jul;14(4):1445-1461. doi: 10.1111/1751-7915.13789. Epub 2021 Mar 19. Microb Biotechnol. 2021. PMID: 33739621 Free PMC article.
-
The Dynamical Systems Properties of the HOG Signaling Cascade.J Signal Transduct. 2011;2011:930940. doi: 10.1155/2011/930940. Epub 2011 Feb 7. J Signal Transduct. 2011. PMID: 21637384 Free PMC article.
-
Controlling the rates of biochemical reactions and signaling networks by shape and volume changes.Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4099-104. doi: 10.1073/pnas.0709932105. Epub 2008 Mar 12. Proc Natl Acad Sci U S A. 2008. PMID: 18337513 Free PMC article.
-
Stress Adaptation.Microbiol Spectr. 2017 Jul;5(4):10.1128/microbiolspec.funk-0048-2016. doi: 10.1128/microbiolspec.FUNK-0048-2016. Microbiol Spectr. 2017. PMID: 28721857 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases