Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Oct 20;92(2):129-36.
doi: 10.1002/bit.20585.

Laser-guided direct writing for three-dimensional tissue engineering

Affiliations

Laser-guided direct writing for three-dimensional tissue engineering

Yaakov Nahmias et al. Biotechnol Bioeng. .

Abstract

One of the principal limitations to the size of an engineered tissue is oxygen and nutrient transport. Lacking a vascular bed, cells embedded in an engineered tissue will consume all available oxygen within hours while out branching blood vessels will take days to vascularize the implanted tissue. One possible solution is to directly write vascular structures within the engineered tissue prior to implantation, reconstructing the tissue according to its native architecture. The cell patterning technique, laser-guided direct writing (LGDW), can pattern multiple cells types with micrometer resolution on arbitrary surfaces, including biological gels. Here we show that LGDW can pattern human umbilical vein endothelial cells (HUVEC) in two- and three-dimensions with micrometer accuracy. By patterning HUVEC on Matrigel, we can direct their self-assembly into vascular structures along the desired pattern. Finally, co-culturing the vascular structures with hepatocytes resulted in an aggregated tubular structure similar in organization to a hepatic sinusoid. This capability can facilitate studies of tissue architecture at the single cell level, and of heterotypic interactions underlying processes such as liver and pancreas morphogenesis, differentiation, and angiogenesis.

PubMed Disclaimer

MeSH terms