Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Dec;111(5):415-27.
doi: 10.3109/13813450312331342274.

Endothelialization of small-diameter vascular prostheses

Affiliations

Endothelialization of small-diameter vascular prostheses

Y J T van der Zijpp et al. Arch Physiol Biochem. 2003 Dec.

Abstract

In the field of arterial vascular reconstructions there is an increasing need for functional small-diameter artificial grafts (inner diameter < 6mm). When autologous replacement vessels are not available, for example because of the bad condition of the vascular system in the patient, the surgeon has no other alternative than to implant a synthetic polymer-based vessel. After implantation the initial major problem concerning these vessels is the almost immediate occlusion, due to blood coagulation and platelet deposition, under the relatively low flow conditions. As the search for the perfect bio-inert polymer has not revealed a material with suitable properties for this application, improved performance of small-diameter artificial blood vessels is now being sought in the biological field. The poor blood-compatibility of an artificial vascular graft is not simply because of its coagulation-stimulating or platelet-activating properties, but more due to its inability to actively participate in the prevention of blood coagulation and platelet deposition. As these functions are naturally performed by endothelial cells, the utilization of these cells seems inevitable for the construction of a functional small-diameter artificial blood vessels. This review describes the current status of the use of endothelial cells to improve the performance of artificial vascular prostheses.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources