Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Sep 1;46(3):308-17.
doi: 10.1016/j.toxicon.2005.04.020.

Antibodies to a fragment of the Bothrops moojenil-amino acid oxidase cross-react with snake venom components unrelated to the parent protein

Affiliations

Antibodies to a fragment of the Bothrops moojenil-amino acid oxidase cross-react with snake venom components unrelated to the parent protein

Rodrigo Guerino Stábeli et al. Toxicon. .

Abstract

It is widely accepted that immunological cross-reactivity of snake venoms is mediated by antibodies that recognize venom components bearing either amino acid sequence homology or similar biological functions. However, here we demonstrate that polyspecific Bothrops antivenom is a source of cross-reactive antibodies that interact with venom proteins of distinctive primary structures and biological functions. The homoserine lactone derivative of the undecapeptide IQRWSLDKYAM (Ile1-Hse11), excised from the l-amino acid oxidase (LAAO) of the Bothrops moojeni venom, was the ligand of an affinity resin used to isolate specific anti-Ile1-Hse11 antibodies which were instrumental in revealing immunological cross-reactivity among unrelated venom proteins. We examined the extent of the cross-reactivity of these antibodies by probing electroblots of venoms from representative snakes of genera Bothrops, Lachesis, Crotalus and Micrurus, and by unambiguous structural characterization of the affinity-purified proteins of B. moojeni venom recovered from an agarose-anti-Ile1-Hse11 column. Our results indicate that all venoms tested had at least three reactive components toward anti-Ile1-Hse11 antibodies, among which we identified two serine proteases, one phospholipase A2 homologue, and LAAO. We hypothesize that the cross-reactivity of the anti-Ile1-Hse11 antibodies to unrelated venom proteins derives from their mechanism of antigen recognition, whereby complementarity is achieved through reciprocal conformational adaptation of the reacting molecules. Also, we believe these findings have implications both in the development of improved antivenoms and the preparation of immunochemical reagents for diagnostic and scientific investigation purposes in the field of snake venoms.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources