Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Sep 25;824(1-2):123-31.
doi: 10.1016/j.jchromb.2005.07.007.

Studies on the metabolism and toxicological detection of the designer drug 4-methylthioamphetamine (4-MTA) in human urine using gas chromatography-mass spectrometry

Affiliations
Comparative Study

Studies on the metabolism and toxicological detection of the designer drug 4-methylthioamphetamine (4-MTA) in human urine using gas chromatography-mass spectrometry

Andreas H Ewald et al. J Chromatogr B Analyt Technol Biomed Life Sci. .

Abstract

4-Methylthioamphetamine (4-MTA) is a scheduled designer drug that has appeared on the illicit drug market and led to several non-fatal or even fatal poisonings. Only few data are available on its metabolism. The first aim of this study was to identify the 4-MTA metabolites in human urine and then to study whether the authors' STA procedure is suitable for screening for and identification of 4-MTA and/or its metabolites in urine. After enzymatic cleavage of conjugates, solid-phase extraction (SPE) and acetylation the following metabolites could be identified by full-scan gas chromatography-mass spectrometry (GC-MS): deamino-oxo 4-MTA, deamino-hydroxy 4-MTA, ring hydroxy and beta-hydroxy 4-MTA. 4-MTA sulfoxide could be identified as possible artifact. In urine samples after enzymatic hydrolysis, acidic extraction, and methylation, 4-methylthiobenzoic acid could be identified. The authors' systematical toxicological analysis (STA) procedure using full-scan GC-MS after acid hydrolysis, liquid-liquid extraction (LLE) and acetylation allowed detection of 4-MTA as target analyte plus all the above-mentioned metabolites with the exception of 4-methylthiobenzoic acid. The extraction efficiency of 4-MTA was approximately 70% and the limit of detection (LOD) was 30 ng/ml (S/N 3).

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources