A critical role for the programmed death ligand 1 in fetomaternal tolerance
- PMID: 16027236
- PMCID: PMC2213002
- DOI: 10.1084/jem.20050019
A critical role for the programmed death ligand 1 in fetomaternal tolerance
Abstract
Fetal survival during gestation implies that tolerance mechanisms suppress the maternal immune response to paternally inherited alloantigens. Here we show that the inhibitory T cell costimulatory molecule, programmed death ligand 1 (PDL1), has an important role in conferring fetomaternal tolerance in an allogeneic pregnancy model. Blockade of PDL1 signaling during murine pregnancy resulted in increased rejection rates of allogeneic concepti but not syngeneic concepti. Fetal rejection was T cell- but not B cell-dependent because PDL1-specific antibody treatment caused fetal rejection in B cell-deficient but not in RAG-1-deficient females. Blockade of PDL1 also resulted in a significant increase in the frequency of IFN-gamma-producing lymphocytes in response to alloantigen in an ELISPOT assay and higher IFN-gamma levels in placental homogenates by ELISA. Finally, PDL1-deficient females exhibited decreased allogeneic fetal survival rates as compared with littermate and heterozygote controls and showed evidence of expansion of T helper type 1 immune responses in vivo. These results provide the first evidence that PDL1 is involved in fetomaternal tolerance.
Figures
References
-
- Fournel, S., M. Aguerre-Girr, X. Huc, F. Lenfant, A. Alam, A. Toubert, A. Bensussan, and P. Le Bouteiller. 2000. Cutting edge: soluble HLA-G1 triggers CD95/CD95 ligand-mediated apoptosis in activated CD8+ cells by interacting with CD8. J. Immunol. 164:6100–6104. - PubMed
-
- Hunt, J.S., D. Vassmer, T.A. Ferguson, and L. Miller. 1997. Fas ligand is positioned in mouse uterus and placenta to prevent trafficking of activated leukocytes between the mother and the conceptus. J. Immunol. 158:4122–4128. - PubMed
-
- Phillips, T.A., J. Ni, G. Pan, S.M. Ruben, Y.F. Wei, J.L. Pace, and J.S. Hunt. 1999. TRAIL (Apo-2L) and TRAIL receptors in human placentas: implications for immune privilege. J. Immunol. 162:6053–6059. - PubMed
-
- Xu, C., D. Mao, V.M. Holers, B. Palanca, A.M. Cheng, and H. Molina. 2000. A critical role for murine complement regulator crry in fetomaternal tolerance. Science. 287:498–501. - PubMed
-
- Munn, D.H., M. Zhou, J.T. Attwood, I. Bondarev, S.J. Conway, B. Marshall, C. Brown, and A.L. Mellor. 1998. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science. 281:1191–1193. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
