The core histone N-terminal tail domains function independently and additively during salt-dependent oligomerization of nucleosomal arrays
- PMID: 16033758
- DOI: 10.1074/jbc.M507048200
The core histone N-terminal tail domains function independently and additively during salt-dependent oligomerization of nucleosomal arrays
Abstract
Salt-dependent oligomerization of nucleosomal arrays is related to fiber-fiber interactions and global chromosome structure. Previous studies have shown that the H2A/H2B and H3/H4 N-terminal domain (NTD) pairs are able to mediate array oligomerization. However, because of technical barriers, the function(s) of the individual core histone NTDs have not been investigated. To address this question, all possible combinations of "tailless" nucleosomal arrays were assembled from native and NTD-deleted recombinant Xenopus core histones and tandemly repeated 5 S rDNA. The recombinant arrays were characterized by differential centrifugation over the range of 0-50 mm MgCl2 to determine how each NTD affects salt-dependent oligomerization. Results indicate that all core histone NTDs participate in the oligomerization process and that the NTDs function additively and independently. These observations provide direct biochemical evidence linking all four core histone NTDs to the assembly and maintenance of global chromatin structures.
Similar articles
-
Determinants of histone H4 N-terminal domain function during nucleosomal array oligomerization: roles of amino acid sequence, domain length, and charge density.J Biol Chem. 2009 Jun 19;284(25):16716-16722. doi: 10.1074/jbc.M109.011288. Epub 2009 Apr 24. J Biol Chem. 2009. PMID: 19395382 Free PMC article.
-
Hybrid trypsinized nucleosomal arrays: identification of multiple functional roles of the H2A/H2B and H3/H4 N-termini in chromatin fiber compaction.Biochemistry. 1997 Sep 23;36(38):11381-8. doi: 10.1021/bi970801n. Biochemistry. 1997. PMID: 9298957
-
A distinct switch in interactions of the histone H4 tail domain upon salt-dependent folding of nucleosome arrays.J Biol Chem. 2014 Sep 26;289(39):27342-27351. doi: 10.1074/jbc.M114.595140. Epub 2014 Aug 13. J Biol Chem. 2014. PMID: 25122771 Free PMC article.
-
The nucleosomal array: structure/function relationships.Crit Rev Eukaryot Gene Expr. 1996;6(2-3):149-88. doi: 10.1615/critreveukargeneexpr.v6.i2-3.40. Crit Rev Eukaryot Gene Expr. 1996. PMID: 8855387 Review.
-
Intra- and inter-nucleosome interactions of the core histone tail domains in higher-order chromatin structure.Chromosoma. 2014 Mar;123(1-2):3-13. doi: 10.1007/s00412-013-0435-8. Epub 2013 Aug 31. Chromosoma. 2014. PMID: 23996014 Free PMC article. Review.
Cited by
-
Electrostatic origin of salt-induced nucleosome array compaction.Biophys J. 2010 Sep 22;99(6):1896-905. doi: 10.1016/j.bpj.2010.07.017. Biophys J. 2010. PMID: 20858435 Free PMC article.
-
Assembly of nucleosomal arrays from recombinant core histones and nucleosome positioning DNA.J Vis Exp. 2013 Sep 10;(79):50354. doi: 10.3791/50354. J Vis Exp. 2013. PMID: 24056546 Free PMC article.
-
HMGN1 and 2 remodel core and linker histone tail domains within chromatin.Nucleic Acids Res. 2017 Sep 29;45(17):9917-9930. doi: 10.1093/nar/gkx579. Nucleic Acids Res. 2017. PMID: 28973435 Free PMC article.
-
Multifunctionality of the linker histones: an emerging role for protein-protein interactions.Cell Res. 2010 May;20(5):519-28. doi: 10.1038/cr.2010.35. Epub 2010 Mar 23. Cell Res. 2010. PMID: 20309017 Free PMC article. Review.
-
Implicit Solvent Model for Million-Atom Atomistic Simulations: Insights into the Organization of 30-nm Chromatin Fiber.J Chem Theory Comput. 2016 Dec 13;12(12):5946-5959. doi: 10.1021/acs.jctc.6b00712. Epub 2016 Nov 7. J Chem Theory Comput. 2016. PMID: 27748599 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources