Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jul 21;436(7049):424-7.
doi: 10.1038/nature03860.

Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins

Affiliations

Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins

Olaf Scheel et al. Nature. .

Abstract

Eukaryotic members of the CLC gene family function as plasma membrane chloride channels, or may provide neutralizing anion currents for V-type H(+)-ATPases that acidify compartments of the endosomal/lysosomal pathway. Loss-of-function mutations in the endosomal protein ClC-5 impair renal endocytosis and lead to kidney stones, whereas loss of function of the endosomal/lysosomal protein ClC-7 entails osteopetrosis and lysosomal storage disease. Vesicular CLCs have been thought to be Cl- channels, in particular because ClC-4 and ClC-5 mediate plasma membrane Cl- currents upon heterologous expression. Here we show that these two mainly endosomal CLC proteins instead function as electrogenic Cl-/H+ exchangers (also called antiporters), resembling the transport activity of the bacterial protein ClC-e1, the crystal structure of which has already been determined. Neutralization of a critical glutamate residue not only abolished the steep voltage-dependence of transport, but also eliminated the coupling of anion flux to proton counter-transport. ClC-4 and ClC-5 may still compensate the charge accumulation by endosomal proton pumps, but are expected to couple directly vesicular pH gradients to Cl- gradients.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources