Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Jul;30(4):836-41.
doi: 10.1016/j.jhsa.2005.03.011.

A biomechanical analysis of suture materials and their influence on a four-strand flexor tendon repair

Affiliations
Comparative Study

A biomechanical analysis of suture materials and their influence on a four-strand flexor tendon repair

Tom M Lawrence et al. J Hand Surg Am. 2005 Jul.

Abstract

Purpose: Flexor tendon repair strength depends on the suture technique and the suture material used. Configurations that incorporate locking loops prevent sutures from pulling through the tendon but typically fail because of suture breakage. The choice of suture material therefore influences repair strength. This study investigated the mechanical properties of 5 nonabsorbable 4-0 suture materials (monofilament nylon, monofilament polypropylene, braided polyester, braided stainless steel wire, and braided polyethylene) and evaluated their performance when used in a locking 4-strand flexor tendon repair configuration.

Methods: Five samples of 2 strands of each suture type were tested mechanically to determine the material stiffness and ultimate load. In addition, 50 fresh porcine flexor tendons were divided and repaired with each of the 5 suture materials using a 4-strand single-cross technique. Gap force, ultimate strength, and stiffness were measured to compare biomechanical performance.

Results: All repairs failed by suture rupture at the locking loop. Fibrewire and stainless-steel sutures and repairs were significantly stronger and stiffer than the other suture types. The results for Prolene and Ethibond were similar in the tendon repair groups with respect to gap and ultimate forces although Ethibond provided significantly increased repair stiffness. Nylon sutures and repairs consistently produced the poorest mechanical performance in all outcome measures.

Conclusions: Suture material strongly influences the biomechanical performance of multistrand tendon repairs and is an important consideration for the surgeon. Fibrewire and stainless steel are the most biomechanically suitable suture materials for flexor tendon repair whereas nylon is the least suitable. Further developments in suture materials are important for advancements in flexor tendon repair strength.

PubMed Disclaimer

Publication types

LinkOut - more resources