Experimental design for optimal parameter estimation of an enzyme kinetic process based on the analysis of the Fisher information matrix
- PMID: 16039672
- DOI: 10.1016/j.jtbi.2005.05.016
Experimental design for optimal parameter estimation of an enzyme kinetic process based on the analysis of the Fisher information matrix
Abstract
The investigation of enzyme kinetics is increasingly important, especially for finding active substances and understanding intracellular behaviors. Therefore, the determination of an enzyme's kinetic parameters is crucial. For this a systematic experimental design procedure is necessary to avoid wasting time and resources. The parameter estimation error of a Michaelis-Menten enzyme kinetic process is analysed analytically to reduce the search area as well as numerically to specify the optimum for parameter estimation. From analytical analysis of the Fisher information matrix the fact is obtained, that an enzyme feed will not improve the estimation process, but substrate feeding is favorable with small volume flow. Unconstrained and constrained process conditions are considered. If substrate fed-batch process design is used instead of pure batch experiments the improvements of the Cramer-Rao lower bound of the variance of parameter estimation error reduces to 82% for mu(max) and to 60% for K(m) of the batch values in average.
Similar articles
-
Optimal designs for Michaelis-Menten kinetic studies.Stat Med. 2004 Feb 15;23(3):477-91. doi: 10.1002/sim.1612. Stat Med. 2004. PMID: 14748040
-
Prediction of enzyme kinetic parameters based on statistical learning.Genome Inform. 2006;17(1):80-7. Genome Inform. 2006. PMID: 17503358
-
Optimal experiment design for cardinal values estimation: guidelines for data collection.Int J Food Microbiol. 2005 Apr 15;100(1-3):153-65. doi: 10.1016/j.ijfoodmicro.2004.10.012. Epub 2005 Jan 6. Int J Food Microbiol. 2005. PMID: 15854701
-
Integration of enzyme kinetic data from various sources.In Silico Biol. 2007;7(2 Suppl):S73-9. In Silico Biol. 2007. PMID: 17822393 Review.
-
PET kinetic analysis: error consideration of quantitative analysis in dynamic studies.Ann Nucl Med. 2008 Jan;22(1):1-11. doi: 10.1007/s12149-007-0083-2. Ann Nucl Med. 2008. PMID: 18250982 Review.
Cited by
-
Monte Carlo Simulations for the Analysis of Non-linear Parameter Confidence Intervals in Optimal Experimental Design.Front Bioeng Biotechnol. 2019 May 24;7:122. doi: 10.3389/fbioe.2019.00122. eCollection 2019. Front Bioeng Biotechnol. 2019. PMID: 31179278 Free PMC article.
-
Local E-optimality Conditions for Trajectory Design to Estimate Parameters in Nonlinear Systems.Proc Am Control Conf. 2014;2014:443-450. doi: 10.1109/ACC.2014.6858649. Proc Am Control Conf. 2014. PMID: 25346569 Free PMC article.
-
Retinitis pigmentosa: rapid neurodegeneration is governed by slow cell death mechanisms.Cell Death Dis. 2013 Feb 7;4(2):e488. doi: 10.1038/cddis.2013.12. Cell Death Dis. 2013. PMID: 23392176 Free PMC article.
-
Trajectory Synthesis for Fisher Information Maximization.IEEE Trans Robot. 2014 Dec 5;30(6):1358-1370. doi: 10.1109/TRO.2014.2345918. IEEE Trans Robot. 2014. PMID: 25598763 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials