Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Sep-Oct;86(1-2):250-6.
doi: 10.1016/j.ymgme.2005.06.002. Epub 2005 Jul 22.

Myoadenylate deaminase deficiency caused by alternative splicing due to a novel intronic mutation in the AMPD1 gene

Affiliations

Myoadenylate deaminase deficiency caused by alternative splicing due to a novel intronic mutation in the AMPD1 gene

Paul J Isackson et al. Mol Genet Metab. 2005 Sep-Oct.

Abstract

We have examined two Caucasian brothers with myoadenylate deaminase (AMPD) deficiency who presented with exercise intolerance and muscle cramps. Allele-specific PCR amplification assays demonstrated that the common Q12X (C34T) and P48L (C143T) mutations were not found within their AMPD1 genes. Further analysis revealed that both brothers were compound heterozygotes for a previously reported K287I (A860T) mutation in exon 7 and a novel deletion within intron 2 (IVS2-(4-7)delCTTT). The intronic deletion appears to affect the splicing machinery since characterization of AMPD1 mRNA from skeletal muscle of one brother identified multiple alternatively spliced transcripts resulting in multiple deletions in exon 3, the complete deletion of either exon 3 or exons 3 and 4, and the activation of a cryptic splice site that resulted in an insertion at the 5' end of exon 4. The predominant transcript contains a 51 base deletion at the 5' end of exon 3 that is predicted to produce a functional form of AMPD containing a 17-amino acid residue deletion within its N-terminal region. Analysis of 137 Caucasian normal control patients determined that the K287I mutation is relatively frequent (5.1% carrier frequency), whereas the IVS2-(4-7)delCTTT mutation is rare and not present in 274 chromosomes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources