Codon bias and noncoding GC content correlate negatively with recombination rate on the Drosophila X chromosome
- PMID: 16044248
- DOI: 10.1007/s00239-004-0287-1
Codon bias and noncoding GC content correlate negatively with recombination rate on the Drosophila X chromosome
Abstract
The patterns and processes of molecular evolution may differ between the X chromosome and the autosomes in Drosophila melanogaster. This may in part be due to differences in the effective population size between the two chromosome sets and in part to the hemizygosity of the X chromosome in Drosophila males. These and other factors may lead to differences both in the gene complements of the X and the autosomes and in the properties of the genes residing on those chromosomes. Here we show that codon bias and recombination rate are correlated strongly and negatively on the X chromosome, and that this correlation cannot be explained by indirect relationships with other known determinants of codon bias. This is in dramatic contrast to the weak positive correlation found on the autosomes. We explored possible explanations for these patterns, which required a comprehensive analysis of the relationships among multiple genetic properties such as protein length and expression level. This analysis highlights conserved features of coding sequence evolution on the X and the autosomes and illuminates interesting differences between these two chromosome sets.
Similar articles
-
X-linked genes evolve higher codon bias in Drosophila and Caenorhabditis.Genetics. 2005 Sep;171(1):145-55. doi: 10.1534/genetics.105.043497. Epub 2005 Jun 18. Genetics. 2005. PMID: 15965246 Free PMC article.
-
Codon usage bias and effective population sizes on the X chromosome versus the autosomes in Drosophila melanogaster.Mol Biol Evol. 2013 Apr;30(4):811-23. doi: 10.1093/molbev/mss222. Epub 2012 Nov 29. Mol Biol Evol. 2013. PMID: 23204387 Free PMC article.
-
GC-biased gene conversion and selection affect GC content in the Oryza genus (rice).Mol Biol Evol. 2011 Sep;28(9):2695-706. doi: 10.1093/molbev/msr104. Epub 2011 Apr 18. Mol Biol Evol. 2011. PMID: 21504892
-
Evolution of gene function on the X chromosome versus the autosomes.Genome Dyn. 2007;3:101-118. doi: 10.1159/000107606. Genome Dyn. 2007. PMID: 18753787 Review.
-
Non-random autosome segregation: a stepping stone for the evolution of sex chromosome complexes? Sex-biased transmission of autosomes could facilitate the spread of antagonistic alleles, and generate sex-chromosome systems with multiple X or Y chromosomes.Bioessays. 2011 Feb;33(2):111-4. doi: 10.1002/bies.201000106. Bioessays. 2011. PMID: 21154781 Review.
Cited by
-
Recurrent turnover of chromosome-specific satellites in Drosophila.Genome Biol Evol. 2014 May 19;6(6):1279-86. doi: 10.1093/gbe/evu104. Genome Biol Evol. 2014. PMID: 24846631 Free PMC article.
-
Fine-scale heterogeneity in crossover rate in the garnet-scalloped region of the Drosophila melanogaster X chromosome.Genetics. 2013 Jun;194(2):375-87. doi: 10.1534/genetics.112.146746. Epub 2013 Feb 14. Genetics. 2013. PMID: 23410829 Free PMC article.
-
The correlation between recombination rate and dinucleotide bias in Drosophila melanogaster.J Mol Evol. 2008 Oct;67(4):358-67. doi: 10.1007/s00239-008-9150-0. Epub 2008 Sep 17. J Mol Evol. 2008. PMID: 18797953
-
Experimental selection of hypoxia-tolerant Drosophila melanogaster.Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2349-54. doi: 10.1073/pnas.1010643108. Epub 2011 Jan 24. Proc Natl Acad Sci U S A. 2011. PMID: 21262834 Free PMC article.
-
X-linked genes evolve higher codon bias in Drosophila and Caenorhabditis.Genetics. 2005 Sep;171(1):145-55. doi: 10.1534/genetics.105.043497. Epub 2005 Jun 18. Genetics. 2005. PMID: 15965246 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous