Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Mar 15;22(6):645-50.
doi: 10.1093/bioinformatics/bti597. Epub 2005 Jul 26.

Extraction of regulatory gene/protein networks from Medline

Affiliations

Extraction of regulatory gene/protein networks from Medline

Jasmin Saric et al. Bioinformatics. .

Abstract

Motivation: We have previously developed a rule-based approach for extracting information on the regulation of gene expression in yeast. The biomedical literature, however, contains information on several other equally important regulatory mechanisms, in particular phosphorylation, which we now expanded for our rule-based system also to extract.

Results: This paper presents new results for extraction of relational information from biomedical text. We have improved our system, STRING-IE, to capture both new types of linguistic constructs as well as new types of biological information [i.e. (de-)phosphorylation]. The precision remains stable with a slight increase in recall. From almost one million PubMed abstracts related to four model organisms, we manage to extract regulatory networks and binary phosphorylations comprising 3,319 relation chunks. The accuracy is 83-90% and 86-95% for gene expression and (de-)phosphorylation relations, respectively. To achieve this, we made use of an organism-specific resource of gene/protein names considerably larger than those used in most other biology related information extraction approaches. These names were included in the lexicon when retraining the part-of-speech (POS) tagger on the GENIA corpus. For the domain in question, an accuracy of 96.4% was attained on POS tags. It should be noted that the rules were developed for yeast and successfully applied to both abstracts and full-text articles related to other organisms with comparable accuracy.

Availability: The revised GENIA corpus, the POS tagger, the extraction rules and the full sets of extracted relations are available from http://www.bork.embl.de/Docu/STRING-IE

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources