Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Jun 15;39(12):4398-406.
doi: 10.1021/es048224v.

Homologue and isomer patterns of polychlorinated dibenzo-p-dioxins and dibenzofurans from phenol precursors: comparison with municipal waste incinerator data

Affiliations
Comparative Study

Homologue and isomer patterns of polychlorinated dibenzo-p-dioxins and dibenzofurans from phenol precursors: comparison with municipal waste incinerator data

Jae-Yong Ryu et al. Environ Sci Technol. .

Abstract

The role of phenol precursors in polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) formation in municipal waste incinerators is assessed on the basis of homologue and isomer patterns. Homologue and isomer patterns of PCDD and PCDF congeners formed from phenols both in the gas phase and via particle-mediated reactions were studied in an isothermal flow reactor. A mixture of unsubsitituted phenol and 19 chlorinated phenols in relative concentrations found in a municipal waste incinerator (MWI) stack gas was used for this study. PCDD and PCDF homologue and isomer patterns obtained from the phenol experiments were compared with those observed in MWI data. From the phenol experiments, gas-phase formation at 600-700 degrees C favors PCDF formation whereas particle-mediated formation at 400 degrees C favors PCDD formation. Unsubstituted phenol, which was present in high concentration, played a significant role in the formation of PCDD/F congeners under both sets of experimental conditions. PCDD/F distributions in MWI flue gas and fly ash samples were differentfrom those observed in the phenol experiments, suggesting that direct phenol condensation was not the primary route of PCDD/F formation at the incinerators. Gas-phase phenol condensation is a source of dibenzofuran, with subsequent particle-mediated chlorination resulting in PCDF formation. In the case of PCDD formation, phenol condensation may be responsible for the formation of certain highly chlorinated congeners. In this paper we demonstrate the use of homologue and isomer patterns for PCDD/F formation mechanism attribution in municipal waste incinerators.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources