Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005:266:100-12; discussion 112-7, 155-8.

Does hERG coassemble with a beta subunit? Evidence for roles of MinK and MiRP1

Affiliations
  • PMID: 16050264
Review

Does hERG coassemble with a beta subunit? Evidence for roles of MinK and MiRP1

Arun Anantharam et al. Novartis Found Symp. 2005.

Abstract

The voltage-gated potassium channel formed by hERG pore-forming alpha subunits generates the IKr cardiac potassium current, and is considered essential for human ventricular repolarization. What is not certain is whether human IKr channels contain ancillary subunits in vivo. Two chief contenders for this role are MinK (encoded by KCNE1) and MiRP1 (KCNE2). MinK and MiRP1 are single transmembrane domain peptides that can co-assemble with hERG in heterologous systems. MinK increases hERG currents by an unknown mechanism. MiRP1 alters hERG current density and gating, although no consensus has been reached as to the precise extent of these effects. Here we discuss key aspects of the debate surrounding the potential roles of MinK and MiRP1 in IKr: inconsistencies between reports of the effects of MiRP1 on hERG in vitro; association with long QT syndrome of inherited mutations in MinK and MiRP1; and a role for MiRP1 polymorphisms in acquired arrhythmia despite the apparent inability of MiRP1 to impinge upon the unique inner vestibule drug-binding site that dominates hERG pharmacology.

PubMed Disclaimer