Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Sep 23;280(38):32890-6.
doi: 10.1074/jbc.M506944200. Epub 2005 Jul 28.

PRMT8, a new membrane-bound tissue-specific member of the protein arginine methyltransferase family

Affiliations
Free article

PRMT8, a new membrane-bound tissue-specific member of the protein arginine methyltransferase family

Jaeho Lee et al. J Biol Chem. .
Free article

Abstract

Protein arginine methylation is a common post-translational modification that has been implicated in signal transduction, RNA processing, transcriptional regulation, and DNA repair. A search of the human genome for additional members of the protein arginine N-methyltransferase (PRMT) family of enzymes has identified a gene on chromosome 12 that we have termed PRMT8. This novel enzyme is most closely related to PRMT1, although it has a distinctive N-terminal region. The unique N-terminal end harbors a myristoylation motif, and we have shown here that PRMT8 is indeed modified by the attachment of a myristate to the glycine residue after the initiator methionine. The myristoylation of PRMT8 results in its association with the plasma membrane. The second singular property of PRMT8 is its tissue-specific expression pattern; it is largely expressed in the brain. A glutathione S-transferase fusion protein of PRMT8 has type I PRMT activity, catalyzing the formation of omega-NG-monomethylated and asymmetrically omega-NG,NG-dimethylated arginine residues on a recombinant glycine- and arginine-rich substrate. PRMT8 is thus an active arginine methyltransferase that is membrane-associated and tissue-specific, two firsts for this family of enzymes.

PubMed Disclaimer

Publication types

MeSH terms