Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Mar;1(3):201-13.
doi: 10.1016/j.cmet.2005.02.002.

A role for the apoptosis inhibitory factor AIM/Spalpha/Api6 in atherosclerosis development

Affiliations
Free article

A role for the apoptosis inhibitory factor AIM/Spalpha/Api6 in atherosclerosis development

Satoko Arai et al. Cell Metab. 2005 Mar.
Free article

Abstract

Macrophages play a central role in the development of atherosclerosis through the accumulation of oxidized LDL (oxLDL). AIM (Spalpha/Api6) has previously been shown to promote macrophage survival; however, its function in atherogenesis is unknown. Here we identify AIM as a critical factor that protects macrophages from the apoptotic effects of oxidized lipids. AIM protein is induced in response to oxLDL loading and is highly expressed in foam cells within atherosclerotic lesions. Interestingly, both expression of AIM in lesions and its induction by oxidized lipids require the action of LXR/RXR heterodimers. AIM-/- macrophages are highly susceptible to oxLDL-induced apoptosis in vitro and undergo accelerated apoptosis in atherosclerotic lesions in vivo. Moreover, early atherosclerotic lesions in AIM-/-LDLR-/- double knockout mice are dramatically reduced when compared to AIM+/+LDLR-/- controls. We conclude that AIM production facilitates macrophage survival within atherosclerotic lesions and that loss of AIM decreases early lesion development by increasing macrophage apoptosis.

PubMed Disclaimer

Publication types

LinkOut - more resources