Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation
- PMID: 16054090
- DOI: 10.1016/j.cmet.2005.05.002
Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation
Abstract
Mammalian cells detect decreases in oxygen concentrations to activate a variety of responses that help cells adapt to low oxygen levels (hypoxia). One such response is stabilization of the protein HIF-1 alpha, a component of the transcription factor HIF-1. Here we show that a small interfering RNA (siRNA) against the Rieske iron-sulfur protein of mitochondrial complex III prevents the hypoxic stabilization of HIF-1 alpha protein. Fibroblasts from a patient with Leigh's syndrome, which display residual levels of electron transport activity and are incompetent in oxidative phosphorylation, stabilize HIF-1 alpha during hypoxia. The expression of glutathione peroxidase or catalase, but not superoxide dismutase 1 or 2, prevents the hypoxic stabilization of HIF-1 alpha. These findings provide genetic evidence that oxygen sensing is dependent on mitochondrial-generated reactive oxygen species (ROS) but independent of oxidative phosphorylation.
Comment in
-
ROS: really involved in oxygen sensing.Cell Metab. 2005 Jun;1(6):357-8. doi: 10.1016/j.cmet.2005.05.006. Cell Metab. 2005. PMID: 16054083
Similar articles
-
Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing.Cell Metab. 2005 Jun;1(6):401-8. doi: 10.1016/j.cmet.2005.05.001. Cell Metab. 2005. PMID: 16054089
-
Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing.J Biol Chem. 2000 Aug 18;275(33):25130-8. doi: 10.1074/jbc.M001914200. J Biol Chem. 2000. PMID: 10833514
-
Genetics of mitochondrial electron transport chain in regulating oxygen sensing.Methods Enzymol. 2007;435:447-61. doi: 10.1016/S0076-6879(07)35023-4. Methods Enzymol. 2007. PMID: 17998068
-
Mitochondrial complex III regulates hypoxic activation of HIF.Cell Death Differ. 2008 Apr;15(4):660-6. doi: 10.1038/sj.cdd.4402307. Epub 2008 Jan 25. Cell Death Differ. 2008. PMID: 18219320 Review.
-
Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia.Exp Physiol. 2006 Sep;91(5):807-19. doi: 10.1113/expphysiol.2006.033506. Epub 2006 Jul 20. Exp Physiol. 2006. PMID: 16857720 Review.
Cited by
-
Peroxisome proliferator-activated-γ coactivator-1α-mediated mitochondrial biogenesis is important for hematopoietic recovery in response to stress.Stem Cells Dev. 2013 Jun 1;22(11):1678-92. doi: 10.1089/scd.2012.0466. Epub 2013 Feb 13. Stem Cells Dev. 2013. PMID: 23311338 Free PMC article.
-
Important role of PLC-γ1 in hypoxic increase in intracellular calcium in pulmonary arterial smooth muscle cells.Am J Physiol Lung Cell Mol Physiol. 2013 Feb 1;304(3):L143-51. doi: 10.1152/ajplung.00310.2012. Epub 2012 Nov 30. Am J Physiol Lung Cell Mol Physiol. 2013. PMID: 23204067 Free PMC article.
-
Redox modification of proteins as essential mediators of CNS autophagy and mitophagy.FEBS Lett. 2013 Aug 2;587(15):2291-8. doi: 10.1016/j.febslet.2013.06.007. Epub 2013 Jun 15. FEBS Lett. 2013. PMID: 23773928 Free PMC article. Review.
-
HIF-2α in Resting Macrophages Tempers Mitochondrial Reactive Oxygen Species To Selectively Repress MARCO-Dependent Phagocytosis.J Immunol. 2016 Nov 1;197(9):3639-3649. doi: 10.4049/jimmunol.1600402. Epub 2016 Sep 26. J Immunol. 2016. PMID: 27671111 Free PMC article.
-
Biological Activities of Reactive Oxygen and Nitrogen Species: Oxidative Stress versus Signal Transduction.Biomolecules. 2015 Apr 15;5(2):472-84. doi: 10.3390/biom5020472. Biomolecules. 2015. PMID: 25884116 Free PMC article. Review.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources