Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Sep;13(9):439-48.
doi: 10.1016/j.tim.2005.07.007.

Chemosynthetic endosymbioses: adaptations to oxic-anoxic interfaces

Affiliations
Review

Chemosynthetic endosymbioses: adaptations to oxic-anoxic interfaces

Frank J Stewart et al. Trends Microbiol. 2005 Sep.

Abstract

Chemosynthetic endosymbioses occur ubiquitously at oxic-anoxic interfaces in marine environments. In these mutualisms, bacteria living directly within the cell of a eukaryotic host oxidize reduced chemicals (sulfur or methane), fueling their own energetic and biosynthetic needs, in addition to those of their host. In habitats such as deep-sea hydrothermal vents, chemosynthetic symbioses dominate the biomass, contributing substantially to primary production. Although these symbionts have yet to be cultured, physiological, biochemical and molecular approaches have provided insights into symbiont genetics and metabolism, as well as into symbiont-host interactions, adaptations and ecology. Recent studies of endosymbiont biology are reviewed, with emphasis on a conceptual model of thioautotrophic metabolism and studies linking symbiont physiology with the geochemical environment. We also discuss current and future research directions, focusing on the use of genome analyses to reveal mechanisms that initiate and sustain the symbiont-host interaction.

PubMed Disclaimer

Publication types

LinkOut - more resources